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Problem 1 . . . fair sprint 3 points
At this year’s Olympic Games in Paris, the men’s 100 m sprint was won by American Noah
Lyles in 9.784 s, Jamaica’s Kishane Thompson finished second by five thousandths of a second.
Lyles ran on the track number 7, Thompson on the track number 4. Sprint is started by the
report of the starter’s gun firing. Every runner has a speaker right behind their starting blocks
to ensure they all hear the sound at the same time. However, if they started at the sound of a
real gunshot fired from a pistol located near lane 1 at the start line, by how much time would
Thompson have won? The width of a lane is 1.22 m.

Jarda thought that Forrest Gump had won.

The speed of sound is 343 m·s−1 and the distance of both sprinters’ left ears is 3·1.22 m = 3.66 m.
We get the time difference

∆t = 3.66 m
343 m·s−1

.= 0.0107 s .

Thus, the Jamaican would hear the gunshot about one hundredth of a second earlier than Lyles,
therefore starting earlier and crossing the finish line first. He would win by

∆twin = 0.01067 s − 0.005s .= 0.006 s ,

so the race would end up similarly, only with the opposite result.

Jaroslav Herman
jardah@fykos.org

Problem 2 . . . rail problem 3 points
For a more comfortable train ride, the continuous welded rail technology, which consists of
welding the rails and creating a uniform surface for the train to pass, is used. However, such
a track must withstand thermal expansion in summer and winter. What temperature difference
can a steel rail withstand if its linear thermal expansion coefficient is 1.63 · 10−5 K−1 and the
permitted stress of the rail is 600 MPa? Assume that the tensile Young’s modulus for steel
is 195 GPa. David took a train to the dorms.

To determine how big of a temperature difference the rail can withstand, we will use the Hooke’s
law. This law states that the normal stress σ is directly proportional to the relative elongation ε
through the Young’s modulus of elasticity E

σ = Eε .

Relative elongation is defined as the ratio of the variation in length, ∆l, to the original
length, l0

ε = ∆l

l0
.

Next, we need to examine how the rail length would change with a temperature change
of ∆t. In reality, the length of the rail remains constant, resulting in stress within the rail,
which adheres to the same relations. The elongation can be expressed using the formula

∆l = l0α∆t ,
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where α is the coefficient of thermal expansion. From here, we can derive that the temperature
difference ∆tm at which the rail exceeds the allowable stress σm is given as

∆tm = σm

Eα
.

After substitution, we find that ∆tm
.= 189 K. To justify the equations used in the calcu-

lation, we can also picture the scenario as if first, the rail extends, but then we compress it
back to its original size. In practice, the rails will begin to bend even at lower temperatures,
particularly due to the shape of the rails and the weight of the trains acting upon them.

David Ševčík
david.sevcik@fykos.org

Problem 3 . . . in the shadows 3 points
Consider a street lamp of height H = 3.2 m as a point source of light. A person of height h =
= 1.8 m is walking in a straight line directly away from the lamp at a constant speed of v =
= 1.5 m·s−1. Calculate the acceleration of the top of their shadow.

Marek lives in the shadows.
Let us denote H the height of the lamp and h the height of the man. The distance of the man
from the lamp is s, and x is the length of his shadow on the ground. Next, let us denote the
initial distance of the man from the lamp as s0. Then the similarity of the triangles implies

s + x

H
= x

h
⇒ x = sh

H − h
.

The distance of the person from the lamp varies in time as s = vt + s0, so we obtain

x = h(vt + s0)
H − h

= hv

H − h
t + hs0

H − h
.

We see that the tip of the shadow moves in a uniform linear motion whose acceleration is
therefore zero.

Jakub Koňárek
jakub.konarek@fykos.org

Problem 4 . . . run as fast as you can 3 points
A pilot of a Mitsubishi A6M Zero fighter aircraft with a power of P = 940 hp was flying
horizontally over an atoll belonging to the United States of America at speed v = 180 kn.
When the pilot spotted the runway with aircrafts attempting to take off, he pulled the triggers of
both 7.7 mm fixed-mounted Type 97 aircraft machine guns with a cadence of c = 900 min−1 and
a muzzle velocity of u = 745 m·s−1. Each of the machine guns had one full belt of ammunition
with 500 rounds. If the pilot flew exactly over the runway that was l = 7 800 ft long, how many
rounds did he hit it with? Dodo watched war movie.
Since the aircraft flies horizontally, at a constant height above the runway, the trajectories of
the projectiles will intersect the runway at the same intervals of distance at which they left the
barrel. The time that Zero takes to fly across the runway is

t = s

v
= 7 800 ft

180 kn = 2 377 m
92.6 m·s−1 = 25.67 s .
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The machine gun can fire continuously for a maximum of 500/900 min = 33.3 s. It therefore
has enough rounds to cover the entire runway. So from one machine gun a total of

N = 25.67 s · 900 min−1 = 385 rounds ,

hit the runway. However, there are two machine guns, so the answer is N
.= 770.

Jozef Lipták
liptak.j@fykos.org

Problem 5 . . . water resource engineering 3 points
Water should be conserved, which is why we collect rainwater into a barrel. Water flows into
the barrel via a vertical gutter, which collects water from the roof. When the barrel gets full,
water is wastefully spilled into the surrounding garden. We would like to redirect the water flow
outside the barrel when it gets full, instead of overfilling the barrel. Verča’s dad is an engineer
(just like she will be one day) and invented a clever machine to solve this problem. On the
surface floats a plastic cylinder with a base of area S = 100 cm2 and density ρ = 550 kg·m−3,
connected via rigid stick to the gutter end. When the surface rises, it pushes the cylinder up,
eventually closing the gutter end.

What is the minimal height of the cylinder in order for the buoyancy to be strong enough
to close the gutter end while being heavy enough to let the end open as the surface lowers?
Assume that the force F = 15 N is required in order to open or close the gutter end (for closing
up, for opening down), and otherwise the system cylinder-gutter end does not move.

Verča watched her daddy at work.

We will write out the conditions for both cases (opening and closing of the outlet).
To open the gutter, we need

F < Shρg ,

where h is the height of the cylinder.
To close it, we must satisfy the condition

F < Shg(ρv − ρ) ,

where ρv = 998 kg·m−3 is the density of water and g = 9.81 m·s−2 is the gravitational accel-
eration. We can see that in both cases, the acting force is directly proportional to the height
of the cylinder. Therefore, it suffices to determine in which case h is greater; this will be the
necessary minimum height. After expressing from both conditions, we obtain

h1 > 27.8 cm ,

h2 > 34.1 cm .

From this, we see that the minimum height of the cylinder with the given parameters is 34.1 cm.

Radovan Lev
radovan.lev@fykos.org
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Problem 6 . . . cooking up acid 4 points
What is the minimum mass of the sulfuric acid H2SO4 that we need to mix with 200 ml of pure
water to bring the mixture to the boiling point, which is 98 ◦C in the laboratory? The initial
temperature of both liquids is 25 ◦C. When mixed 70.5 kJ of heat is released per mole of sulfuric
acid added.

Assume a specific heat capacity of the resulting solution of 0.75 cal·g−1·◦C−1 independent of
external conditions, and with molar masses of hydrogen 1.01 g·mol−1, oxygen 16.00 g·mol−1 and
sulfur 32.07 g·mol−1. Assume that the reaction happens quickly and under standard conditions.
Neglect the heat capacity of the container and any heat losses. Next consider a simplified case,
where the amount of heat released per mole of added acid remains constant until the mole ratio
of acid to water exceeds 0.1. At that point, the amount of heat produced by adding more acid
will decrease significantly, and therefore assume that in this case, the mixture will not reach
the boiling point. If this occurs, give the result as 0 g.

Karel was wondering, why is the mixing so dangerous.
The total heat Q released is determined as

Q = nH2SO4
Qm =

mH2SO4

MH2SO4

Qm ,

where nH2SO4
is the amount of substance of H2SO4, which is expressed as the ratio of its

mass mH2SO4
to its molar mass MH2SO4

, and Qm is the molar heat released during the dilution
of H2SO4. The molar mass of the molecule is the sum of the molar masses of all the atoms in
it, so the following holds

MH2SO4
= 2MH + MS + 4MO

where MH, MS, and MO are the molar masses of hydrogen, sulfur, and oxygen, respectively, as
provided in the problem statement.

According to the assumptions and the law of conservation of energy, all the heat Q is utilized
to heat up the solution, and then, by the law of conservation of mass, we have

Q =
(
mH2SO4

+ mH2O
)

c (tv − t0) =
(
mH2SO4

+ ρH2OVH2O
)

c (tv − t0)

where mH2O is the mass of water expressed through its volume VH2O and density ρH2O =
= 0.998 g·cm−3, c = 3.138 J·g−1·◦C−1 is the specific heat capacity of the solution, tv is the
boiling point of the mixture and t0 is its initial temperature. From the heat equation, we
need to express the sought mass of H2SO4, and then substitute the values from the problem
statement and the list of constants. We obtain

mH2SO4
=

ρH2OVH2Oc (tv − t0)
Qm

2MH+MS+4MO
− c (tv − t0)

.= 93 g .

Finally, we verify the condition given in the problem statement. For the ratio p of the amount
of substance of acid nH2SO4

to the amount of substance of water nH2O holds the following

p =
nH2SO4

nH2O
=

mH2SO4
MH2O

mH2OMH2SO4

=
mH2SO4

(2MH + MO)
ρH2OVH2O (2MH + MS + 4MO)

.= 0.09 < 0.1 ,

and therefore the above-calculated solution is valid.
Patrik Stercz

patrik.stercz@fykos.org
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Problem 7 . . . planespotting 3 points
Martin is looking out of the window and sees a flying plane. He wonders, how fast the plane
could be flying. In his mind, Martin counts that the plane was in his field of view between two
houses for 10 seconds (the aircraft is in the field of view if Martin can see at least half of the
aircraft). According to the rule “1 thumb in the distance of an outstretched hand corresponds
to 2.5 angular degrees” he calculates that the plane has flown 7.5 of his “thumbs” during that
time. Martin doesn’t know how far the plane was flying, but he makes an estimation, that in
his field of view, it occupied about half of his thumb during the whole observation and that the
plane could be a Boeing 737-800. Calculate, how fast the plane was flying, based on Martin’s
estimations. Martin was looking out of Veronika’s window.

Let us first review which quantities we know:
• Aircraft observation time: t = 10 s
• Angular crossing distance: 7.5 inches · 2.5 ◦ per inch = 18.75 ◦

• Angular size of the aircraft: 0.5 inches · 2.5 ◦ per inch = 1.25 ◦

We do not know how far the plane is to calculate its flight path using the angle it flew.
However, we can easily calculate it if we look up the length of the Boeing 737-800, which
is l = 39.5 m. The trajectory s of the aircraft is then from the cross multiplication

s = 18.75 ◦

1.25 ◦ · 39.5 m = 592.5 m .

We then calculate the velocity trivially as

v = s

t
= 592.5 m

10 s = 59.25 m·s−1 = 213.3 km·h−1 .

Hence, the plane would be flying at about 213 km·h−1. That is much less than the top speed
of a Boeing 737-800, which is about 950 km·h−1. Martin’s problem statement omitted the fact
that he observed the plane as it landed, but still if it was taken into account, it is an inaccurate
result, yet, given the instruments used (thumbs), it is a quite reasonable order of magnitude
estimate (planes normally land at speeds of around 250 km·h−1 – 300 km·h−1).

Martin Vaněk
martin.vanek@fykos.org

Problem 8 . . . formula car on the ceiling 4 points
To maximize the frictional force between the wheels of Formula 1 cars and the road surface, the
car body is designed so that air resistance pushes the car to the ground. At what speed would
the Formula 1 cars have to travel in order to drive heads down on the ceiling? For simplicity,
consider that the car is a right-angled triangle of length 5.1 m, height 1.0 m, and width 1.8 m.
The vehicle’s mass, including the driver, is 800 kg. Let us further assume that the air particles
are initially stationary and elastically bounce off the vehicle.

Jarda wanted to skip a traffic jam in a tunnel.

We will examine the situation from the inertial frame of reference attached to the Formula 1
car. In this frame, the air molecules move with a velocity v relative to the formula. Since the
collision is elastic and the mass of the formula is much greater than that of the air molecules,
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we can assume that for the colliding molecules, the angle of reflection is equal to the angle of
incidence; let us denote this angle as α.

Furthermore, since the molecules move along a straight line parallel to the roof, we can
determine this angle from the shape of the vehicle (a right triangle) as

α = arctan h

d

.= 11.3 ◦ ,

where h = 1.0 m represents the height of the right triangle and d = 5.1 m the length of its base.
After the collision, the molecules will have the same speed but will be deflected from their

original direction by an angle of 2α (angle of incidence + angle of reflection). For their mo-
mentum in the direction perpendicular to the roof, we have

py = mv sin 2α .

From the law of conservation of momentum, this momentum is equal to the momentum trans-
ferred to the vehicle in this direction during the collision. For the total momentum over time,
we need to substitute the mass of all the molecules colliding with the vehicle in time dt into
the relation above.

Let us consider a rectangular prism with dimensions w = 1.8 m (the width of the Formula 1),
d, and h dt, where h dt equals the distance traveled by the formula in time dt.

The mass is then given as
dm = hwdρ dt ,

where ρ is the density of air.
Substituting into the momentum equation, we get

dpy = h sin 2α dm ,

dpy = wdv2ρ sin 2α dt .

Finally, the relation between momentum and the upward force acting on the vehicle is

F = dp

dt
,

from which
Fy = sdv2ρ sin 2α .

This force must balance out the gravitational force Mg acting on the formula

Mg = whd2ρ sin 2α ,

where M is the mass of the formula.
Rearranging gives

v =
√

Mg

wdρ sin 2α

.= 98 m · s−1 .

Radovan Lev
radovan.lev@fykos.org
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Problem 9 . . . warming up a baking tray with pendulum 4 points
The induced currents in a conductor can be demonstrated by an experiment in which a metal
tray is placed under a swinging pendulum consisting of a magnet attached to a string and the
oscillations are quickly damped. By how many degrees does such a tray heat up? We use
an aluminum tray of width and length a = 12 cm, thickness d = 0.42 mm with specific heat
capacity cAl = 896 J·kg−1·K−1. The pendulum suspension has a length l = 84 cm, a maximum
deflection α = 33 ◦ and the mass of the weight is m = 120 g. Consider that half of the energy
of the pendulum is converted into heat, which is received by the metal tray, and the other half
is dissipated by other means. The heat is distributed evenly in the tray. Neglect the weight of
the string and the dimensions of the magnet. The density of aluminum is ρAl = 2 700 kg·m−3.

Karel saw a picture of a demonstrative experiment in a textbook.

The initial energy of the pendulum is equal to its potential energy, which can be evaluated as

Ep = mgl (1 − cos α) .

Half of this energy is used for the heating up of the metal tray according to the formula

Q = a2dcAlρAl∆T ,

where ∆T is difference between the final and the initial temperature and ρAl = 2 700 kg·m−3 is
the density of aluminum. Rearranging the formula we get

1
2mgl (1 − cos α) = a2dcAlρAl∆T ,

∆T = mgl(1 − cos α)
2a2dcAlρAl

,

∆T = 5.5 · 10−3 K .

Therefore, the metal tray has heated up by ∆T = 5.5 · 10−3 K.

Radovan Lev
radovan.lev@fykos.org

Problem 10 . . . diproton bids farewell 4 points
Let us imagine a particle composed of two protons, i.e., a helium 2 nucleus. Such a parti-
cle is highly unstable and rapidly decays into two separate protons. What is the maximum
speed that these protons can acquire after a spontaneous decay in the center-of-momentum
frame? Consider that the rest mass of a diproton is 2.015 89 Da and the mass of a single proton
is 1.007 825 Da. Karel wondered about a problem with helium 2.

The key is to realize that in the center-of-momentum frame, according to the law of conservation
of momentum, the protons must move with equal speeds in opposite directions after the decay.
We calculate this speed using the law of conservation of energy.

The energy released by the decay is given by the equation

E = (md − 2mp)c2 ,
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where md is the mass of a diproton and mp is the mass of a proton. This energy is converted
into kinetic energy

E = 2 · 1
2mpv2 ,

where v is the velocity of one proton.
For v, we then get

v = c

√
md

mp
− 2

or numerically, v = 4.63 · 106 m·s−1. We see that the velocity of the protons is approxi-
mately 1.5 percent of the speed of light, which indicates that the non-relativistic approximation
provides a fairly accurate result.

Note: Dalton is a unit of mass equal to the atomic mass constant.

Radovan Lev
radovan.lev@fykos.org

Problem 11 . . . accelerated deceleration 4 points
Jarda filmed his route around the city on a camera in his car. At home, he then began
to examine a section of the footage where he was traveling at the maximum allowed speed
of 50 km·h−1, and 55 m before the intersection, the traffic light flashed red, so he slowed down
with constant acceleration to stop at the intersection. How many times faster does he have
to play this recording to make it appear as if he was slowing down with a drastic acceleration
of 10g? Jarda wanted to prove he was a superhero.

Let us denote s = 55 m as a breaking distance, ar as the acceleration used to stop the car, and
the speed as vr = 50 km·h−1 .= 13.9 m·s−1. According to the law of conservation of energy

F s = mars = 1
2mv2

r ⇒ ar = v2
r

2s

.= 1.75 m·s−2 ,

where we compared the car’s initial kinetic energy with the work exerted by the breaking force F
to stop the vehicle.

Now assume that the footage is replayed x-times faster. The car is therefore moving with
the speed va = xvr. The distance s is the same as on the original footage. Using the formula
above, we can find the condition for the acceleration

10g = aa = v2
a

2s
= x2 v2

r
2s

⇒ x =
√

10g
2s

v2r
= 7.5 .

The footage must be sped up by at least seven times to achieve the desired acceleration.

Jaroslav Herman
jardah@fykos.org
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Problem 12 . . . a cracked bottle 4 points
A bottle of sparkling water slipped out of Eliška’s hand and fell to the ground. When it hit the
floor, a hole was made in the bottle, from which the drink began to spurt. Consider a model
situation where water sprays out at an angle α = 70 ◦ (measured from the ground) to a height
of h = 1.20 m. What was the initial difference between the pressure in the bottle and the
ambient pressure? Eliška dropped a bottle of Kofola.

From the law of conservation of energy, we determine the initial vertical velocity of the water

1
2mv2

y = mgh ,

vy =
√

2gh .

The total velocity is then calculated as

v = vy

sin (α) .

Now, to relate the pressure to this velocity, we use Bernoulli’s equation, which states:

p + 1
2ρv2 = const .

For the region between the inside of the bottle, where the water has zero velocity, and the water
outside, where the pressure is equal to the atmospheric pressure, we have

p + pa = 1
2ρv2 + pa .

We substitute for the velocity
p = 1

2ρ
2gh

sin2(α) ,

from which
p

.= 1.3 · 104 Pa .

The pressure in the bottle immediately after the impact was approximately 1.3 · 104 Pa higher
than the atmospheric pressure.

Radovan Lev
radovan.lev@fykos.org

Problem 13 . . . big guitar bang 4 points
As Paťo walked through the door, he slammed his guitar against the doorjamb. Later on, when
he checked the damage, he noticed that one of the strings was tuned exactly a semitone higher
than the original frequency. Since the string was already due for replacement before that, Pato
figured he could kill two birds with one stone.

He decided to tightly and firmly wind a new layer of wire onto the string in the shape of
a helix. How thick of a wire, made from the same material, does he need to buy to retune the
string to its original frequency? The problematic string had a thickness of 1.1 mm at the start.
Assume equal temperament tuning and that the tension in the string remains unchanged during
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this manipulation. Consider the string both in its original state and after the wire has been
wound, as a homogeneous circular right cylinder. Paťo didn’t want to change the strings.

Let us start with a bit of music mathematics. In equal temperament tuning, the frequencies
of semitones form a geometric sequence. Semitones group into octaves after twelve steps, and
a semitone one octave higher has double the frequency of the corresponding lower semitone.
Translating this into mathematics, we can derive the common ratio q of the sequence as

2 = fn+12

fn
= fn · q12

fn
= q12 ⇒ q = 12√2

for any two semitones fn and fn+12 that are an octave apart.
Let fd denote the string’s frequency before detuning (and after adding the wire) and fr the

frequency after detuning. From the previous relation, we have

fr = qfd = 12√2fd .

The vibrations of the string are governed by Mersenne’s laws, which state that a string of
length l, with linear mass density µ, under tension F , vibrates at the frequency

f = 1
2l

√
F

µ
.

Before substituting this into the previous equation, we note that wrapping a wire around the
string does not change its length l or the tension F (per the problem statement). This gives

1
2l

√
F

µr
=

12√2
2l

√
F

µd
⇒ µd = 6√2µr

for the string’s linear mass densities µr (before wrapping) and µd (after wrapping).
Assuming the string is a homogeneous cylinder, its linear mass density can be expressed

using its volume density and cross-sectional area. Since the material (and thus the volume
density ρ) is constant, we find

ρSd = µd = 6√2µr = 6√2ρSr ⇒ Sd = 6√2Sr

where ρ is the density of the material, and Sr and Sd are the cross-sectional areas of the string
before and after wrapping, respectively.

Assuming circular cross-sections, we calculate the diameters. The diameter of the detuned
string is given as dr = 1.1 mm, and wrapping the wire increases this by two diameters of the
wire dd

π
(2dd + dr)2

4 = Sd = 6√2Sr = 6√2πd2
r

4 ,

from which, solving for dd, we obtain

dd =
( 12√2 − 1

) dr

2
.= 3.3 · 10−2 mm .

Finding such a thin wire might take an eternity, so despite the laziness, replacing and tuning
the string seems to be a simpler option.

Patrik Stercz
patrik.stercz@fykos.org
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Problem 14 . . . road on road 4 points
Torrential rains carried away cube-shaped paving stones with an edge of 10 cm and a mass
of 2 kg from the road. What must have been the minimum depth of the water flow needed to
overcome the coefficient of friction 0.5 and thus move the cobblestones lying separately on the
subgrade? The water was flowing at a speed of 1.3 m·s−1. Assume drag coefficient of 1.05.

There were floods in Czechia this September.

The frictional force is proportional to the normal force, which in this case is

N = mg − a2hρg ,

where we have subtracted the buoyant force from the weight, h is the height of the water we
are looking for and ρ is its density. Even though the cube is on a flat surface, we cannot assume
that the water cannot get under the cube, as this surface (e.g. sand) might be porous and not
so flat.

The water therefore exerts its hydrostatic pressure on the cube from below.
The resistive force of the water which must overcome the frictional force, is determined as

F = 1
2Cahρv2 ,

where C = 1.05 is the drag coefficient and the product ah is the area on which the water acts.
From the equality of forces, we obtain

1
2Ca hρv2 = fmg − fa2hρg ⇒ h = fmg

aρ
(

1
2 Cv2 + fa g

) .= 7.1 cm .

Jaroslav Herman
jardah@fykos.org

Problem 15 . . . pulleys with blocks and friction 5 points

m

m

m

Two blocks lie on top of each other and are connected via a pulley so
that the rope runs horizontally in both directions. The bottom block
is connected by a rope via a pulley to another block which is hanging
on this rope. There is a coefficient of friction f = 0.10 between
the blocks and between the blocks and the ground. All three blocks
weigh m = 500 g. What will be the magnitude of the acceleration of
the hanging block? All the pulleys and ropes have no mass and the
system is initially at rest.

Lego thought... this is definitely a physics problem.

At the beginning, it is necessary to find out which frictional forces are in the system. The
upper block exerts a force mg on the lower block, so the frictional force braking this block will
be µmg. The lower block will thus be decelerated by the reaction to this force. At the same
time, the bottom block will be pressed against the pad by a force of 2µmg, and hence will be
additionally decelerated by a frictional force between itself and the pad of magnitude 2µmg, so
in total 3µmg.
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Since both ropes and pulleys are assumed to be weightless, the tension in the rope will not
vary along its length. Let us therefore denote the magnitude of the tension in the rope on which
the block hangs as T1 and the magnitude of the tension in the other rope as T2.

The magnitudes of the forces acting on the blocks will be as follows: a weight acts on the
first block and it is pulled upwards by the rope

F1 = mg − T1 ,

where the positive sign is chosen for the directions in which each block will move. The second
block is accelerated by the first rope and decelerated by the second rope and friction

F2 = T1 − T2 − 3µmg .

The last block is accelerated by the second rope and braked only by the frictional force.

F3 = T2 − µmg .

Since all blocks are “on the same rope”, their accelerations will be the same. In other words,
when the hanging block moves down by a distance x, the two remaining blocks will also move
upwards by the distance x. Thus, the magnitudes of their accelerations must also be equal.
Consequently, we get the equality

ma = F1 = F2 = F3 ,

which is a system of equations with three unknowns: T1, T2, a. We first express T2

F1 = F3 ,

mg − T1 + µmg = T2 ,

from which we then express T1

F1 = F2 ,

mg − T1 = T1 − T2 − 3µmg ,

mg − T1 = T1 − mg + T1 − µmg − 3µmg ,

2mg + 4µmg = 3T1 ,

from which we finally obtain the acceleration as

ma = F1 ,

ma = mg − 2
3mg − 4

3µmg ,

a = 1
3g − 4

3µg = 2.0 m·s−2 .

Šimon Pajger
legolas@fykos.org
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Problem 16 . . . increasing the degree of polarization 4 points
The degree of polarization of light P is defined using the intensities of two perpendicular
polarizations, I1 and I2, as

P = |I1 − I2|
I1 + I2

.

Imagine an environment in which the intensity of the vertically polarized light decreases
to 99.0 % after each traveled distance L. Meanwhile, the intensity of the horizontally po-
larized light decreases faster, to 97.5 % after each distance L. After what distance will the light
have a degree of polarization P = 0.420? Provide your answer as a multiple of L to one decimal
place. Before entering the environment, the light is unpolarized (P0 = 0.000).

Karel was thinking about the anisotropic environment during the election.

From the problem statement, we know that the vertical intensity Iv and the horizontal inten-
sity Ih decrease with distance x according to the relations

Iv = 0.990x/LI0 , Ih = 0.975x/LI0 ,

where I0 is the initial intensity of each polarization (not the total initial intensity of the light
beam, which is twice this value).

We substitute these expressions into the definition of polarization and solve the equation

0.420 = 0.990x/LI0 − 0.975x/LI0

0.990x/LI0 + 0.975x/LI0
= 0.990x/L − 0.975x/L

0.990x/L + 0.975x/L
,

where we see that the result does not depend on the initial intensity I0. This equation can be
solved numerically using a computational tool like WolframAlpha.1 The result is equal to x =
= 58.6L, so the value 58.6 has to be submitted into the game system.

If you are more mathematically proficient and you can quickly solve exponential relations,
you can proceed as follows, though this method is more prone to errors when rewriting the
equations.

0.420 ·
(
0.990x/L + 0.975x/L

)
= 0.990x/L − 0.975x/L

1.420 · 0.975x/L = 0.580 · 0.990x/L

1.420
0.580 = 0.990x/L

0.975x/L
=
(0.990

0.975

)x/L

x =
ln 1.420

0.580

ln 0.990
0.975

L
.= 58.6 L

Thus, we arrive at the same result x = 58.6L. Finally, we could look at how the polarization
levels have decreased. The values became Iv

.= 0.555 and Ih(x) .= 0.227

Karel Kolář
karel@fykos.org

1https://www.wolframalpha.com/input?i=%280.99%5Ex+-+0.975%5Ex%29%2F%280.99%5Ex%2B+0.975%5Ex%29%3D0.
420
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Problem 17 . . . warmer background 5 points
Cosmic background radiation is one of the pieces of evidence for the Big Bang which we can
observe today. It corresponds very well to the thermal radiation of a black body with a tem-
perature of T0 = 2.725 K. Given that the universe is 13.8 · 109 years old, how many years ago
was the temperature of this radiation T = 1.1T0? Assume that the universe expands uniformly
(the scale factor is directly proportional to time).

Karel wondered if the universe is infinite. . . whether to have a toast. . .

If the universe expands uniformly, then a ∼ t holds for the scale factor. The scale factor indicates
how much the distances in the universe at a certain time are larger or smaller, compared to
the current distances. Just like all other distances, the wavelength of the cosmic background
radiation changes as well. Since the radiation corresponds to the emission of a black body, we
can use Wien’s law relating its temperature and wavelength

λ = b

T
,

where b is the Wien’s constant. Then for the temperature T ∝ 1/λ. From here, we get

T0

T
= λ

λ0
.

However, the wavelength ratio is
λ

λ0
= a

a0
.

Finally, for the ratio of the scale factors, the following holds

a

a0
= t

t0
.

By combining the equations, we obtain

T0

T
t0 = t ,

δt = t0 − t = t0(1 − T0

T
) ,

δt = 1.25 · 109 years .

Note: A more precise calculation for a universe dominated by dark energy yields a time differ-
ence of about 1.3 · 109 years. Thus, we can see that the linear approximation gives relatively
correct answers for such a small temperature difference. A linear time dependence of the scale
factor is a good solution to the Friedmann equations and corresponds to a negatively curved
universe, which does not contain any matter (neither substance, radiation, nor dark energy).

Radovan Lev
radovan.lev@fykos.org
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Problem 18 . . . combined 4 points
Consider two parallel infinite wires spaced l = 10 cm apart and non-conductive springs of
stiffness k = 10 N·mm−1 and a rest length l stretched between them. The distance between
two consecutive springs is 100 km. By how many millimetres does the spring elongate when
a current of 20 A starts to flow through one of the wires and 10 A through the other in the
opposite direction? Assume that the system has reached a completely stabilized state.

Káťa wanted to come up with a problem that combined multiple branches of physics.

Let us denote the magnitudes of currents flowing in the wires I1 and I2 respectively. The
magnitude of force per unit length, by which the wires repel each other, can be expressed as

|f1| = µ0I1I2

2πd ,

where d is a distance of the wires in steady state and µ0 is permeability of vacuum. Now let us
look at one wire. Each spring will exert a force on it given by

F = −k(d − l) .

If we denote the spacing between the springs as δ, the total force from all springs acting on the
wire, per unit length, is

f2 = −k (d − l)
δ

.

If the system is in steady state, the net force of the force acting on the wire is zero. So we get

f1 + f2 = 0 ,

µ0I1I2

2πd − k(d − l)
δ

= 0 ,

leading to a quadratic equation for d in the form of

2πk d2 − 2πlk d − µ0δI1I2 = 0 ,

which has two real solutions

d = l

2 ± 1
2

√
l2 + 2µ0δI1I2

πk
. (1)

From the form (1) we can see that the second solution leads to the negative d, mathematically
valid but physically unrealistic solution. So the elongation of the spring will be

d − l = − l

2 + 1
2

√
l2 + 2µ0δI1I2

πk
= 3.9 mm.

Jakub Koňárek
jakub.konarek@fykos.org
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Problem 19 . . . laser lunch 5 points
In the third episode of the first season of the show The Big Bang Theory, Leslie Winkle heats her
lunch using a laser. In the episode, we learn, that it’s a COIL laser (λ = 1 315 nm) with a power
of 500 kW and the heating process takes 2.60 s. The heat capacity of her lunch is 1.00 kJ·K−1

and it needs to be heated by 60.0 ◦C, to taste good. How many moles of photons emitted by
the laser during the heating process do not contribute to the heating of her lunch? Assume
that if the photon transfers its energy to the lunch, there will be no energy losses.

Terka was hungry in the lab.

The energy of a single photon can be expressed using the formula

Ef = hc

λ
,

where h is Planck’s constant, c is the speed of light, and λ is the wavelength of light. Next, we
need to express the total energy required to heat a meal

Eo = C∆T ,

where C is the heat capacity of the meal, and ∆T represents the temperature change we need
to achieve.

It would also be useful to know how much energy the laser emits during its operating time,
namely

El = P τ ,

where P is the power of the laser, and τ is the duration for which it heats the meal.
From these equations, we can determine the energy that is not utilized for the heating of

the meal, i.e., the total energy losses

Ez = El − Eo ,

from where we can calculate the number of photons not utilized for heating as

N = Ez

Ef
.

By combining all these relationships, we obtain

N = λ
P τ − C∆T

hc
,

and upon substitution, we find that the number of particles N and the amount in moles n are

N
.= 8.21 · 1024 ⇒ n = N

NA

.= 13.6 mol .

Tereza Voltrová
tereza.voltrova@fykos.org

17

mailto:tereza.voltrova@fykos.org


Physics Brawl Online 2024 14th year November 20, 2024

Problem 20 . . . garage doors 4 points
A garage door weighs m = 200 kg. To keep the door motor from lifting the entire weight of
the door, the door is connected to a steel torsion spring (see the image 1). The spring has an
external diameter of D = 4.1 cm, and the steel wire which forms the spring has a diameter
of d = 5.0 mm. One end of the spring is fixed. The other end is rotating together with the
axis in which the cable is fixed to the bottom of the door. The door swings into the garage to
a horizontal position. Assume that the door is bending continuously. When the door is fully in
the horizontal position, the spring is relaxed. The height of the door is H = 2.1 m. Determine
the initial limiting number of windings N of the spring, for the door motor to exert utmost the
force F = 150 N. For the given spring, the torque force M depends on the angle of rotation φ
as

M = kφ = Ed4

64ND
φ ,

where E = 200 GPa is Young’s modulus of elasticity for steel.

m

d

D

N

�F

Figure 1: Scheme of the door mechanism.

Jarda couldn’t figure out why the garage door wouldn’t open when the spring broke.

We have
M = kφ = Ed4

64ND
φ .

The force acting on the door upwards is Fp = 2M/D. If the door is at the top, the spring
is relaxed according to the problem statement. When the door is at the bottom, the angle φ
changes according to the diagram by

φ = 2π H

πD
= 2H

D
,

where H is the distance between the ceiling and the bottom of the door.
The force of the spring lifting the door is thus

Fp = 2
D

Ed4

64ND

2H

D
= Ed4

16ND3 H .

To lift the door even when it is fully down, the spring force must overcome its weight mg.
Our force must therefore be at least

F = mg − Fp = mg − Ed4

16ND3 H .
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From here, we can express the initial number of coils N as

N = Ed4

16D3 (mg − F )H
.= 130 .

Jaroslav Herman
jardah@fykos.org

Problem 21 . . . who would fear a buoy 5 points
A seagull weighing M = 2.0 kg lands on a cylindrical buoy of mass m = 5.0 kg and base area S =
= 0.20 m2. The not very graceful landing makes the buoy rock. Calculate the period of the
small oscillations of the buoy if it is oriented vertically, its top base is above the surface of water
and it is attached to the bottom of the lake by a taut chain through a spring of stiffness k =
= 2.0 kN·m−1. The situation takes place on a lake. Vojta is not afraid of the buoy.

In the equilibrium state, the weight and the elastic force are balanced by the buoyant force.
The relationship is written as

(m + M)g + kl1 = Sl2ρg ,

where ρ represents the density of water, and l1, l2 are, respectively, the extension of the spring
and the height of the submerged part of the cylinder in equilibrium. If the buoy is displaced
from this equilibrium position by l (we can assume it is submerged by l), the force F acting on
it will have the magnitude

F = S(l2 + l)ρg − k(l1 − l) − (m + M)g
= S l2ρg − k l1 − (m + M)g︸ ︷︷ ︸

=0

+Slρg + kl = l(Sρg + k)

and will be oriented opposite to the direction of the buoy’s displacement.
Notice that this relationship mathematically corresponds to Hooke’s law – the equation for

the force acting on a spring of stiffness (Sρg + k) displaced by l. From the formula for the
period of a spring of a given stiffness and given mass of the weight, we can directly compute

T = 2π
√

m + M

Sρg + k

.= 0.26 s .

Note that the same relationship could also be derived by solving the equation of motion for
this system, but this can be avoided thanks to the mathematical analogy.

Vojtěch David
vojtech.david@fykos.org

Problem 22 . . . rolling glass of ice 5 points
Consider a tube (cylindrical surface) with very thin walls and a surface density of σ = 5.5 kg·m−2.
The tube is full of ice with density ρ = 917 kg·m−3, the ice slides along the inner walls without
friction. We place the tube on a plane inclined at an angle α = 30 ◦ such that it can roll without
slipping, and its axis of rotation remains horizontal. What will be the acceleration of the tube’s
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centre of gravity? The tube’s radius is r = 4.0 cm and its length is l = 11 cm.
Lego wondered about the acceleration of rolling.

The ice in the pipe has a total mass of ml = Vlρ = πr2lρ. It also moves at the same velocity
as the center of mass of the pipe. Let us denote this velocity as v, then the kinetic energy of
the ice is

El = 1
2πr

2lρv2 .

And since there is no friction between it and the pipe, there is nothing to cause it to rotate,
meaning we do not need to consider any rotational kinetic energy.

The shell has a mass of mp = Spσ = 2πrlσ. Its center of mass has a velocity v, so its
translational kinetic energy is

Ept = πrlσv2 .

However, in addition to translation, it also rotates, specifically with an angular velocity such
that it does not slip relative to the plane, satisfying ω = v/r. Furthermore, since all the mass
is located at a distance r from the axis of rotation, the moment of inertia is Jp = mpr2. The
rotational kinetic energy of the shell is then

Epr = 1
2Jpω2 = πrlσr2 v2

r2 = πrlσv2 ,

which could have been deduced without using the moment of inertia.
Thus, the total kinetic energy of the pipe and the ice is

Ek = El + Ept + Epr = 1
2πrl(rρ + 4σ)v2 ,

and we can treat πrl(rρ + 4σ) = mef as an effective inertial mass, while the actual total mass
is m = ml + mp = πrl(rρ + 2σ).

The net force acting on the pipe is the component of its weight parallel to the incline, i.e.,
Fv = mg sin α. The acceleration is obtained by dividing by the effective inertial mass as

a = Fv

mef
= πrl (rρ + 2σ) g sin α

πrl(rρ + 4σ) = g sin α
rρ + 2σ

rρ + 4σ
= 4.0 m·s−2 .

Šimon Pajger
legolas@fykos.org

Problem 23 . . . delicious fuel 5 points
Mr. Simpson arrived to a czech nuclear power plant for a conference for nuclear safety engineers.
During a security check, the czech technicians found that Mr. Simpson had swallowed a nuclear
reactor fuel pellet back at his home power plant. Let us assume that the pellet is made from
pure uranium oxide UO2, which is enriched and is consists of 95 % of the isotope 238U and 5 % of
the isotope 235U. What is the activity of uranium in the pellet, which Mr. Simpson swallowed?
The pellet has a cylindrical shape with a diameter d = 7.5 mm and height h = 11 mm. The
density of uranium oxide is ρUO2

= 10.97 g·cm−3. Jindra knows that one pellet is harmless.

Molar mass of oxygen is mO = 16.00 g·mol−1. The molar mass of isotope 238U is m238 =
= 238 g·mol−1 and that of the isotope 235U is m235 = 235 g·mol−1. The half-lives of these two

20

mailto:legolas@fykos.org


Physics Brawl Online 2024 14th year November 20, 2024

isotopes are T238 = 4.468 · 109 yr = 1.410 · 1017 s and T235 = 7.038 · 108 yr = 2.221 · 1016 s,
respectively. The density of uranium oxide UO2 is ρUO2

= 10.97 g·cm−3. The average molar
mass of uranium oxide is

mUO2
= 2mO + (pm235 + (1 − p)m238) = 269.85 g·mol−1,

where p = 5 % is the ratio of 235U. The volumetric mass density of the UO2 molecules in the
pellet is

n =
ρUO2

NA

mUO2

= 2.448 · 1022 cm−3,

where NA is Avogadro constant. The volumetric mass densities of the atoms of both uranium
isotopes are

n235 = pn, n238 = (1 − p)n.

The amount of UO2 in one pellet is not big enough to sustain a controlled fission reaction
like in a nuclear reactor or an uncontrolled fission reaction like in a nuclear explosion. The only
activity in the pellet therefore comes from the decay of both radioactive isotopes 235U and 238U
and their products.

Generally, the number of nuclei N in an radioactive isotope follows the relation

N = N02− t
T = N0e− ln(2) t

T ,

where t is time past since the start of the measurement and N0 is the number of nuclei at
time t = 0. The activity of the isotope is

A = −dN

dt
= ln(2)

T
N0e− ln(2) t

T = ln(2)
T

N.

The total activity of uranium in the pellet is then

A = ln(2)pnV

T235
+ ln(2)(1 − p)nV

T238
,

where V = πd2h/4 = 0.4860 cm3 is the volume of the pellet. The activity of the uranium nuclei
in the stomach of Mr. Simpson is A = 74.12 kBq .= 74.1 kBq.

Jindřich Jelínek
jjelinek@fykos.org

Problem 24 . . . infinite resistance 5 points

A B

R

Determine the resistance of an infinite network of ideal resistors
between points A and B. Each resistor in the diagram has the
same resistance R = 1 kΩ. Jindra likes triangles.

Let us denote the point above the point A to the right as C, the
point to the left above the point B as D, and the point halfway
between points A and B as E. If we remove points A, B, and E
and their connections, the resistance Rtot between points C and D
would be the same as that between points A and B due to symmetry. We use this to calculate
the resistance Rtot between points A and B.
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We will replace the arrangement of the resistors in the triangles ACE and BDE with a star
arrangement. Since all resistors have the same resistance R, each leg of the star has the same
resistance R/3. The resistance between points A and B is

Rtot = R

3 +
2R
3

(
2R
3 + Rtot

)
4R
3 + Rtot

+ R

3 ,

Rtot

(4R

3 + Rtot

)
= 2R

3

(4R

3 + Rtot

)
+ 2R

3

(2R

3 + Rtot

)
,

R2
tot + 4R

3 Rtot = 8R2

9 + 2R

3 Rtot + 4R2

9 + 2R

3 Rtot ,

0 = R2
tot − 12R2

9 ,

Rtot = 2
√

3
3 R = 1.154 701 kΩ .

The total resistance of this infinite network of resistors is 1.154 701 kΩ.
Jindřich Jelínek

jjelinek@fykos.org

Problem 25 . . . live broadcast 5 points
We are recording a screen with a diagonal of u = 23 inch and a resolution of 1 920 px × 1080 px
from a distance of d = 1 m using a camera. The camera feed is transmitted live back onto the
screen. Assume that the camera captures a square area with a diagonal field of view α = 50 ◦,
that the camera image is adjusted to fit the dimensions of the television (i.e., the originally
square image is stretched to fill the entire screen), and that the camera is positioned along the
symmetry axis of the screen. Determine how many times we will see the screen displayed within
its own image, given that the smallest discernible image of the screen must have an area of at
least 100 px to be distinguishable. Jarda got a new camera.
If the camera has a field of view angle α, then in the plane of the television screen, it captures
a square area of side length

sk =
(√

2 tan
(

α

2

)
d
)

= 0.659 m .

Knowing the diagonal length and the aspect ratio of the television, we determine its width as

st = 16√
162 + 92

u = 0.509 m ,

and its height as
vt = 9√

162 + 92
u = 0.286 m ,

with the substitution u = 23 inch = 58.42 cm.
The ratio of the television’s side length to the width of the area captured by the camera

determines how much each side shrinks when projected onto the television. This means that
the sides of the screen in the first image shrink to

st → st
st

sk
and vt → vt

vt

sk
.
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The television image, thus scaled down, becomes the new reference. We proceed similarly to
obtain a geometric series, where for the number of pixels displaying the n-th image of the
television, we have

Rn = Rt

(
vtst

sk2

)n

,

where Rt is the total number of pixels on the television, which is

Rt = 1 920 × 1 080 = 2 073 600 px .

By solving the inequality
100 < Rt

(
vtst

sk2

)n

,

we find that n < 9.09. We need to consider the largest integer less than or equal to this value,
so nmax = 9. We can still see the ninth television image, but not the tenth.

Radovan Lev
radovan.lev@fykos.org

Problem 26 . . . periodic deflection 5 points
Electrons accelerated by a voltage of 1.0 kV pass through the center of a deflection plate ca-
pacitor which is 3.0 cm long. An alternating voltage of amplitude 40 V and frequency 50 Hz is
connected to it. The electrons hit the screen of an oscilloscope located at 40 cm from the end
of the capacitor. What is the maximum speed of the beam’s trace on the screen? The distance
between the plates of the capacitor is 5.0 mm. Neglect the electric field outside of it.

Jarda admires modern flat screens.

Let us calculate the velocity of the incoming electrons. If they were accelerated by a voltage V =
= 1.0 kV, then their energy is V e. Comparing this with their kinetic energy mev2

x/2, we obtain
their velocity as

vx =
√

2V e

me

.= 19 · 106 m·s−1 ,

where me is the mass of an electron and e is the elementary charge. The electrons will thus
pass through the capacitor in a time

τ = l1

vx

.= 1.6 · 10−9 s ,

where l1 = 3.0 cm is the length of the capacitor. Therefore, the electrons remain in the capacitor
for only a very short time.

During this time, they are subjected to an electric force perpendicular to the capacitor
plates. The electric field between the plates is

E = U(t)
d

= U0

d
sin ωt ,

where U(t) is the voltage across the capacitor plates, d = 5.0 mm is the distance between the
plates, U0 = 40 V is the amplitude of this voltage, and ω = 2πf = 314 s−1 is the angular
frequency of the voltage oscillation.
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However, this field changes much more slowly than the electron’s transit time. We can
therefore assume that the field’s magnitude remains constant during the electron’s time in the
capacitor and that it exerts a constant force on the electron. This force is

F = −Ee = −U0e

d
sin ωt .

Thus, the electron moves perpendicular to the plates with an acceleration ay = F/me during
the time τ . In this direction, when passing through the capacitor it gains the velocity

vy = ayτ = − U0e

dme
τ sin ωt .

The direction of its flight after leaving the capacitor is determined by the ratio vy to vx. From
the similarity of triangles, we determine the distance y between the symmetry plane and the
point of impact on the screen as

y

l2
= vy

vx
⇒ y = l2

vy

vx
= −l1l2

1
v2

x

U0e

dme
sin ωt = − l1l2

d

U0

2V
sin ωt .

Here, l2 = 40 cm is the distance from the end of the capacitor to the screen.
We see that this position depends periodically on time. It represents the position of the

beam’s trace on the screen. To find the speed at which this trace moves, we calculate its
derivative as

vs = dy

dt
= − l1l2

d

U0

2V
ω cos ωt .

The position changes with this velocity over time. The maximum value occurs whenever
cos ωt = 1, and its magnitude is

vs,max = πf l1l2

d

U0

V
= 15 m·s−1 ,

where we substituted ω = 2πf for the angular frequency.

Jaroslav Herman
jardah@fykos.org

Problem 27 . . . use crosswalks 5 points
Jarda decided to cross a road of width 5.0 m when a car approached him in the middle of the
far lane at 50 km·h−1. The car was 1.5 m wide, driving in the middle of its lane, and had no
intention of braking. Jarda ran across the road in front of the car at a speed of 3.0 m·s−1. How
close to Jarda (along the road) could the car have been when he decided to step into the road
if the car did not hit him? Jarda was running across the road in a straight line.

Jarda is not always using crosswalks. . .

Jarda enters the road with a speed u = 3 m·s−1 at an angle α to the normal to the roadside.
To avoid being hit by the car, he must avoid the corner of the right front bumper of the car.
This corner is moving at a speed v = 50 km·h−1 at a distance d = 4.5 m (since the lane is 2.5 m
wide and the car is driving in the middle, its edge is 0.5 m away from the far side of the road).

Jarda travels the distance d in the time

t = d

u cos α
.
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The car travels L′ = vt in this time. Let us denote L the distance we are solving for. We can
arrange the equation as

L = L′ − d tan α = d
(

v

u cos α
− tan α

)
= d

cos α

(
v

u
− sin α

)
.

We plot this function L(α) in some graphics program (e.g. Geogebra) and simply deduce that
the minimum value is approximately 20 m. This is not a very large distance, it is definitely
safer to give yourself a larger margin when crossing a road. We could also use derivation and
calculate the result.

Jaroslav Herman
jardah@fykos.org

Problem 28 . . . shot at a better future 5 points
From a cannon firmly attached to the ground, situated at the equator, we shoot a ball weigh-
ing 5 kg at a 45◦ angle, which lands 50 m away from the cannon. How much would the sidereal
day shorten if the Earth rotated with the same angular velocity as the ball immediately after
the shot? Assume the shot is fired westward, and approximate the Earth as a homogeneous
sphere. Consider only the gravitational effects of Earth.

Monika is aiming to make fun of the problem-checkers.

We will solve the problem using the law of conservation of angular momentum. This law states
that the total angular momentum of an isolated system must be conserved, meaning

LZ2 = LZ1 + Ls , (2)

where LZ1 is Earth’s initial angular momentum, LZ2 is Earth’s angular momentum immediately
after the shot, and Ls the angular momentum of the projectile. This can be expressed in vector
form as

Ls = r × p = mr × v ,

where m = 5 kg is the mass of the projectile, v the velocity vector of the projectile, and r is
the position vector (directed from Earth’s center to the cannon). Since we are only interested
in the magnitude of angular momentum, we write

Ls = mR⊕vx ,

where R⊕ = 6.378 ·106 m is Earth’s equatorial radius and vx is the horizontal component of the
projectile’s velocity. Because the projectile is fired at an angle of 45◦, the horizontal component
is equal to the vertical component. Given that the projectile travels a horizontal distance x =
= 50 m under gravitational acceleration g = 9.81 m·s−2, we use the projectile motion equations
at the point of impact

x = vxt ,

0 = vxt − 1
2gt2 .

From the first equation, we solve for t, substitute into the second equation, and solve for vx:

vx =
√

gx

2 .
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Returning to equation (2), the angular momentum of a sphere of mass M and radius r,
rotating with angular speed ω, is given by

L◦ = 2
5M⊕R2

⊕ω1 ,

where ω1 = 7.292 ×10−5 s−1 is Earth’s angular velocity (one rotation in a sidereal day of
23 hours, 56 minutes, and 4 seconds). After the shot, Earth’s angular velocity becomes ω2 =
= ω1 + ∆ω. Substituting these into equation (2)

2
5M⊕R2

⊕(ω1 + ∆ω) = 2
5M⊕R2

⊕ω1 + mvxR⊕ ,

we solve for ∆ω

∆ω = 5mvx

2M⊕R⊕
.

Now, we find the change in the length of the day ∆T caused by ∆ω. The relationship
between angular velocity and the period is

∆T = 2π
ω1

− 2π
ω1 + ∆ω

= 2π
ω1

(
1 − 1

1 + ∆ω
ω1

)
(∗)
≈ 2π∆ω

ω2
1

= 5πm
M⊕R⊕ω2

1
vx = 5πm

M⊕R⊕ω2
1

√
gx

2 ,

where in step (∗), we used the approximation 1/(1 + x) ≈ 1 − x for small x (which is valid here,
as verified after substitution).

Substituting numerical values we get

∆T
.= 6.1 ×10−21 s .

This shows that ∆T is negligible compared to the length of the day, confirming that the
assumption ∆ω/ω1 ≪ 1 was valid.

Monika Drexlerová
monika.drexlerova@fykos.org

Problem 29 . . . hanging phone 5 points
Petr’s phone, weighing m = 200 g, fell off a shelf while connected to a charger plugged into
a wall socket. The charger cable consists of two copper wires with a circular cross-section, each
of length l0 = 1.00 m and diameter d0 = 1.50 mm. The phone remained hanging on it after
the fall. By how many nanoohms did the resistance of the charger change? Assume that the
charger forms a series circuit with the phone and the power source in the socket. The Young’s
modulus of elasticity for copper is E = 110 GPa, its Poisson’s ratio is ν = 0.340 , and its specific
electrical resistivity is ρ = 16.78 nΩ·m. Do not consider the effect of the plastic insulation of
the cable. Petr’s phone fell to the ground (again).

First, let us calculate how the dimensions of the wires change. The hanging phone exerts a force
on the charger, W = mg. Since the cross-sections of the wires are circular, the areas are given
as S0 = πd2

0/4, and the stress σ on each wire is

σ = mg

2S0
= 2mg

πd2
.= 555.1 kPa ,
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where the weight W is divided by two because the phone is suspended by two wires.
The new length of the wire can be calculated using Hooke’s law as

l = l0

(
1 + σ

E

)
.= 1.000 005 m .

However, the wire also narrows due to the stretching. The Poisson’s ratio for copper is ν =
= 0.340, so the new diameter is given by

d = d0

(
1 − νσ

E

)
.

To find the resistance of the charger, we use the formula involving specific resistivity

R = ρ
l

S
.

For the difference between the original and the new resistance, we have

R − R0 = 2ρ
(

l

S
− l0

S0

)
,

where the coefficient 2 in front of the term on the right accounts for the fact that we are
calculating the change in resistance for two identical wires connected in series. Substituting,
we get

R − R0 = 2ρl0

S0

(
1 + σ

E(
1 − νσ

E

)2 − 1

)
.

To simplify this expression further, we expand the coefficient in the first term of the parentheses
into a Taylor series

1(
1 − νσ

E

)2 ⇒ 1
(1 − x)2 = 1 + 2x + o(x2) .

Substituting the series expansion into the original formula and neglecting the quadratic term
in the Taylor expansion, we get

R − R0 = 2ρl0σ

S0E
(2ν + 1) ,

which, after substituting the numerical values, yields

R − R0
.= 161.0 nΩ .

Petr Sacher
petr.sacher@fykos.org
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Problem 30 . . . concentric spheres 5 points
Let there be an infinite number of concentric spherical shells with a uniformly distributed
charge. The smallest sphere with a radius r = 0.1 mm has a positive charge of 2Q, where Q is
the elementary charge. All the other spheres have a positive charge of Q, and the radius of
the n-th sphere is n-times greater than the radius of the (n−1)-th sphere. What is the potential
on the surface of the smallest sphere, assuming the potential at infinity is zero?

Monča found a potential use of some approximation.

The potential of the electric field on a sphere behaves the same way as a potential around
a point charge with the same charge as the sphere. It can therefore be expressed as

φ = k
q

r
,

where q is the charge and k = 1/(4πε) is a constant describing the medium. According to
the principle of superposition, the electric fields of the individual spheres do not influence each
other. Thus, the total potential on the surface of the smallest sphere will be given by the sum
of the potentials of all the individual spheres – we need to sum over infinitely many layers. If
we expand the first few terms of the sum, we observe a certain pattern:

φ1 = k
2Q

r
,

φ2 = k
Q

2r
,

φ3 = k
Q

2 · 3r
= k

Q

3!r ,

φ4 = k
Q

2 · 3 · 4r
= k

Q

4!r .

It is not difficult to verify that this trend will continue, and for any n-th layer (for n ≥ 2), the
expression will hold:

φn = k
Q

n!r .

Now, we can factor out the constant kQ/r from the entire infinite sum, yielding:

φtotal = k
Q

r

(
2 + 1

2! + 1
3! + 1

4! + 1
5! + . . .

)
.

The infinite series in parentheses is the expansion of Euler’s number. The solution can therefore
be written as:

φtotal = k
Qe

r
.

After substituting numerical values, we find:

φtotal = k
Qe

r
= 9 · 109 1.602 · 10−19e

1 · 10−4 = 3.9 · 10−5 V .

The potential on the surface of the smallest sphere is φtotal = 3.9 · 10−5 V.

Monika Drexlerová
monika.drexlerova@fykos.org
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Problem 31 . . . measured gas 5 points
Let us completly submerge a measuring cylinder into water, turn it upside down and pull
it out so that the part above the water’s surface is filled with water. Then, we introduce
a tube beneath it, through which flows argon from a gas cylinder. The gas bubbles up into
the measuring cylinder, creating a gas pocket at the top. Once the argon stabilizes and the
water level inside and outside of the cylinder equilizes, we measure that the volume of the gas
is 0.85 l. What is the mass of argon in the measuring cylinder? The temperature of both the
water and the inside of the cylinder is 81 ◦C and the external pressure is atmospheric.

Jarda is again trying to catch you off guard this year.

Once the levels equalise, the pressure inside is the same as outside, i.e. atmospheric. Therefore
inside

n = pV

RT

moles of gas. However, the experiment takes place at a relatively high temperature when the
saturation vapour pressure is already significant. Water molecules evaporate from the surface
into the volume of the cylinder, but in equilibrium, the same amount condenses back. The
total pressure pa inside of the cylinder is thus given by the sum of the pressure of the water
molecules pH2O and argon pAr, and similarly for the sum of all particles.

The pressure of saturated water vapour at 81 ◦C je asi pH2O = 0.05 MPa,2 which is about
half the atmospheric pressure. The partial pressure of argon and the number of moles of argon
particles in the cylinder is therefore

pAr = pa − pH2O
.= 50 kPa, nAr = pArV

RT

.= 0.014 mol .

The molar mass of argon is MAr
.= 40 g·mol−1, its mass in a cylinder is hence

mAr = MArnAr = MAr
(pa − pH2O)V

RT

.= 0.58 g .

Jaroslav Herman
jardah@fykos.org

Problem 32 . . . weather watching 5 points
A meteorological satellite continuously captures images of the Earth’s surface and transmits the
data back to Earth at a constant frequency f . Jindra first picked up the signal from the satellite
on his antenna when the satellite climbed just above the horizon. The frequency was fmax =
= 137.915 51 MHz. The satellite subsequently climbed further above the horizon and reached
its maximum altitude. The last signal Jindra received was just before the satellite went below
the horizon. The frequency at that time was fmin = 137.909 49 MHz. What is the radius of the
satellite’s orbit?

Assume that the satellite orbits the Earth in a circular orbit. Neglect the rotation of the
Earth and its effect on the frequency shift. Jindra was at the Expo.

The frequency shift occurs due to the Doppler effect. In the leading order, the Doppler effect is
influenced only by the projection of the velocity vector onto a line connecting the satellite and

2See e.g. https://www.tzb-info.cz/tabulky-a-vypocty/9-vlastnosti-syte-vodni-pary-pri-danem-tlaku.
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the observer. The satellite orbits the Earth in a circular trajectory with a for-now-unknown
radius R. Its speed is constant and given by

v =

√
GM

R
,

where G is the gravitational constant and M = 5.97 · 1024 kg is the mass of the central body,
in this case, Earth.

Since the satellite flew directly overhead of Jindra, its velocity projection during its horizon
crossing was

u =

√
GM

R

R⊕

R
,

where R⊕ is the Earth’s radius.
When the satellite rose above the horizon, the observer measured a higher frequency

fmax = c

c − u
f,

because at that moment, the distance between the observer and the satellite was decreasing.
At the satellite’s setting below the horizon, the observer measured a lower frequency

fmin = c

c + u
f,

because at that moment, the satellite was moving away.
These two equations can be combined into one

fmax(c − u) = fmin(c + u),

u = c
fmax − fmin

fmax + fmin
,√

GMR2
⊕

1
R3/2 = c

fmax − fmin

fmax + fmin
,

R = 3

√
GMR2

⊕

c2

(
fmax + fmin

fmax − fmin

)2

=

= 7 229 km .= 7 230 km.

The satellite orbits the Earth in a circular trajectory with a radius R = 7 230 km.

Jindřich Jelínek
jjelinek@fykos.org

Problem 33 . . . overpriced taxicab 6 points
During the taxi ride, Monča realized it could not be profitable for any taxicab if the customer
used its services for too long. However, she let her imagination run loose and fantasized about
a taxi that gradually increased its fare during the ride. Let us imagine a hypothetical taxi
operating as follows: for the first hour of the ride, it charges a fixed final price, and then
charges this amount for the following 59 minutes of the ride. Then, the driving time, which
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costs this price, continues to decrease as a geometric sequence. Furthermore, this taxi travels
along segments of length s0. The first segment takes 1 hour to traverse, the second one in
1 hour and 1 minute, and this travel time for the segment of length s0 further increases as
a geometric sequence.

Consider the shortest possible trip for which we would pay an infinite sum. Determine the
overall average speed of such a trip if the speed of the taxi is constant in each segment, with
the taxi traveling at 30 m·s−1 in the first segment. Monča got scammed in a taxicab.

To calculate the average speed, we need to determine the total time t and the total distance s
of the taxi ride.

First, let us calculate the total time. The duration of each segment that costs the same
amount decreases as a geometric sequence. We can calculate its quotient using the first two
terms

q = t2

t1
,

where t1 = 60 min a t2 = 59 min.
To ensure the taxi ride costs an infinite sum, we must pay the finite rate infinitely many

times. Thus, we calculate the minimum travel time t by summing an infinite series with
a common ratio q and the first term t1. We get

t = t1

∞∑
i=0

qi = t1

1 − q
. (3)

Now, let us move on to the calculation of the total distance. The taxi covered the first
segment at speed v1 = 30 m·s−1 for a time t1. The length of each segment is therefore s0 =
= v1t1. The total distance traveled increases with number of segments as geometric sequence.
We can get its quotient as

r = τ2

τ1
,

where τ1 = 60 min a τ2 = 61 min. The duration of the ride across n segments can be expressed
as

τ = τ1
rn − 1
r − 1 . (4)

By expressing the number of segments n from (4), we can substitute τ with the real duration t
with respect to (3)

n = logr

[
1 + (r − 1)t

τ1

]
= 1

ln r
ln
(

1 − r − 1
q − 1

t1

τ1

)
.= 41.9 .

Our taxi went through 41 whole segments with length s0 and a majority of another segment.
On this segment the taxi traveled for time t − τ at a speed

v42 = s0

τ42
= v1

r41 ,

which means that that it covered total distance

s = 41s0 + v42(t − τ) = v1

(
41t1 + t − τ

r41

)
.
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Finally, for the average speed over the total distance traveled, we get

v = s

t

= v1

t

(
41t1 + t − τ

r41

)
= v1

[
41(1 − q) + 1

r41

(
1 + τ1(r41 − 1)(q − 1)

t1(r − 1)

)]
.= 75.5 km·h−1 .

Monika Drexlerová
monika.drexlerova@fykos.org

Vojtěch David
vojtech.david@fykos.org

Problem 34 . . . pressurized bubble in oil 5 points
What additional force would we need to apply on a piston, which leads into a tank containing
a small air bubble in oil, to reduce its radius to half? The piston has a cross-sectional area of S =
= 4.20 cm2. For simplicity, assume that the air in the bubble was initially at normal conditions
and its initial radius was r = 0.420 mm. The surface tension of the oil is σ = 3.42 · 10−4 N·m−1,
the oil conducts heat well, and its temperature does not change significantly during the process.

Karel was thinking about an undesirable bubble.

We do not have the height of the piston or similar details, so we ignore the effects of hydrostatic
pressure (these would likely cancel out unless the bubble moved). According to Pascal’s law,
the pressure in the oil will then be uniform and equal to the pressure from the piston p = F/S.
If we denote the initial pressure in the oil as p1 and the pressure needed to compress the bubble
to half its original radius as p2, then (since the piston area remains constant) the additional
required force is given by

∆F = S(p2 − p1) .

However, due to the surface tension of the oil, the pressure inside the bubble will differ.
Specifically, the capillary pressure of the bubble is

∆pk = 2σ

R
,

where σ is the surface tension of the liquid forming the bubble, and R is the bubble’s radius.
Note: you may find a formula online with a coefficient of 4 instead of 2, indicating twice the
capillary pressure. However, this is for a bubble in the sense of air-film-air, which has two
surfaces (inner and outer), thus exerting twice the pressure compared to a “bubble” inside
a liquid (only pushed by one surface).

We know that the initial pressure inside the bubble was pA. Given the initial radius and
the corresponding capillary pressure, we can calculate the initial pressure in the oil as follows

p1 = pin1 − ∆pk1 = pA − 2σ

r
.

We also know the final radius of the bubble, allowing us to determine the final capillary
pressure. Now, we only need to find the pressure required to compress the bubble. The
problem indicates that the oil conducts heat effectively and maintains a constant temperature.
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Consequently, the temperature of the bubble will also remain constant. Furthermore, we can
reasonably assume that no air escapes from the bubble, leading to an isothermal process. In an
isothermal process, pressure and volume are inversely proportional. Compressing the bubble
to half its radius means its volume decreases by a factor of 8, causing the pressure to increase
by a factor of 8

pin = C

V
= C

4
3πR

3
= C2

R3 ,

pin1 = C2

r3 = pA ,

pin2 = C2

(r/2)3 = 8C2

r3 = 8pin1 = 8pA .

The required pressure in the oil is

p2 = pin2 − ∆pk2 = 8pA − 2σ

r/2 = 8pA − 4σ

r
,

which we can substitute into the expression for the additional force

∆F = S(p2 − p1) = S
((

8pA − 4σ

r

)
−
(

pA − 2σ

r

))
= S

(
7pA − 2σ

r

)
.= 298 N .

We can observe that the contribution from the capillary pressure is only ∆Fk = 2Sσ/r
.=

.= 0.7 mN. Thus, we could have reasonably ignored the surface tension.

Šimon Pajger
legolas@fykos.org

Problem 35 . . . dramatic escape 6 points
Marek is running away from his responsibilities across a bridge of height H = 4.0 m but realizes
he is surrounded. He decides to jump onto a boat of length L = 8.0 m, whose bow is just
emerging from under the bridge and is moving forward at a speed of vl = 5.0 m·s−1. What is
the difference between the maximum and minimum angles α at which Marek can jump from
the bridge at a speed of v = 8.0 m·s−1 to land on the boat? Assume that Marek jumps upwards
and neglect the height of the boat.

Marek is an outlaw. Jarda wants him to proofread this year’s series.
We introduce a coordinate system originating at Marek’s initial position. The x-axis is parallel
to the boat’s path, and the y-axis is perpendicular to it. The entire system moves in the
same direction and at the same speed as the boat. In this coordinate system, Marek’s position
changes as follows

x = (v cos α − vl) t ,

y = vt sin α − 1
2gt2 ,

where α is the angle at which Marek jumps relative to the x-axis and t is the time from the
moment he jumps. Expressing t from the first equation and substituting it into the second, we
obtain

y = xv sin α

v cos α − vl
− gx2

2(v cos α − vl)2 ,
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which we can rewrite as

y = xv
√

1 − cos2 α

v cos α − vl
− gx2

2(v cos α − vl)2 .

We introduce the substitution

cos α = k ,

y = xv
√

1 − k2

vk − vl
− gx2

2(vk − vl)2 .

We now have an equation that must be solved numerically (as terms up to k4 appear after
expansion). We substitute the values y = −H and x = −L and use a numerical solver to find
the resulting values for k (and subsequently cos α)

cos αmax = 0.13012 ⇒ αmax = 82.52 ◦ .

Thus, we found the maximum angle at which Marek can jump.
We can easily find the minimum angle from the condition that he must land precisely at

the bow. Thus, his velocity in the x-direction in our coordinate system must be zero

cos αmin = vl

v
⇒ αmin = 51.32 ◦ .

The range of angles at which Marek can jump is therefore

∆α
.= 31.2 ◦.

Radovan Lev
radovan.lev@fykos.org

Problem 36 . . . endless resistance II 6 points

A B

Determine the resistance of an infinite network of wires between
points A and B. The triangles forming the network are equilateral,
and the distance between the points A and B is a = 1.000 000 m.
All wires are of the same type and have a resistivity of λ =
= 1.000 000 Ω·m−1. Jindra is getting tangled up in the wires.

We label the point to the upper right of point A as C, the point
to the upper left of point B as D, and the midpoint between A
and B as E. If we were to remove points A, B, E, and their connections, the resistance between
points C and D would be half of the total resistance Rtot between points A and B. That is
because all wires have half the length and thus half the resistance in the triangle between C
and D. We use this fact to calculate the resistance between A and B.
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A B
E

C D

Figure 2: Highlighting points C, D, and E.

First, we replace the arrangement of resistors in the triangles ACE and BDE with a star
configuration. Given that all resistors have the same resistance R = λa/2, each limb of the star
has the same resistance R/3. The resistance between points A and B is

Rtot = R

3 +
2R
3

(
2R
3 + Rtot

2

)
4R
3 + Rtot

2
+ R

3 ,

Rtot

(4R

3 + Rtot

2

)
= 2R

3

(4R

3 + Rtot

2

)
+ 2R

3

(2R

3 + Rtot

2

)
,

R2
tot
2 + 4R

3 Rtot = 8R2

9 + R

3 Rtot + 4R2

9 + R

3 Rtot ,

3R2
tot + 4RRtot − 8R2 = 0 ,

Rtot = −4R ±
√

16R2 + 96R2

6 = 2
3R
(
−1 ±

√
7
)

.

Only the positive solution is physically meaningful. Substituting for R, we get

Rtot =
(√

7 − 1
) 2R

3 =
(√

7 − 1
) λa

3
.= 0.548 583 8 Ω.

Thus, the resistance of this infinite network between points A and B is approximately 0.548 583 8 Ω.

Jindřich Jelínek
jjelinek@fykos.org

Problem 37 . . . dipole on a spring 5 points
Consider two charged particles which together form an electric dipole with a moment p0 =
= 2.20 · 10−25 C · m. The system is in its energy minimum, where the particles are separated
by a distance of l0 = 3.10 nm. When displaced, they behave as they were connected by spring
of stiffness k = 4.80 mN·m−1. What would be the dipole moment if the dipole was moving at
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a speed of v = 28.0 km·s−1 perpendicular to the direction of its dipole moment in a homogeneous
magnetic field with an induction of B = 250 mT, which is perpendicular to both the dipole’s
velocity vector and the direction of the dipole moment? Provide the highest possible value.

Jarda changes in the magnetic field.

For the value of the electric dipole outside of the magnetic field, we consider the relation

p0 = ql0 ,

where q = 7.1 · 10−17 C is the charge of the particles.
In a magnetic field, each charge is also subjected to a magnetic force of magnitude Bvq,

where q is the charge of the particle. The sign of the charge differs for the particles, but the
velocity vector, magnetic induction, and charge magnitude are the same for both particles.
Thus, each particle experiences a force in the opposite direction. From the equality of forces
on the spring, we obtain

k (lm − l0) = ±Bvq ,

where the sign depends on the direction in which the charges are moving relative to the magnetic
field. The quantity lm denotes the distance between the particles moving in the magnetic field.
If we adopt a coordinate system where the vector B points along the z-axis, the velocity vector
along the x-axis, and in a right-handed Cartesian system the positive charge is on the positive
y-coordinate, the sign in the equation is − (the magnetic force pushes the charges together). In
the opposite case, the sign is + (the magnetic force acts against the attractive electric force).

The task now is to find the value of the product pm = qlm. To determine the maximum
possible value, we require the magnetic force to push the charges apart, maximizing their
distance. Therefore, we consider only the + sign in the equation.

Expressing lm gives
lm = Bvq

k
+ l0 ,

which we multiply by the charge q to find the desired dipole moment

pm = Bvq2

k
+ p0 = Bvp2

0

kl2
0

+ p0 = 2.27 · 10−25 C·m .

Jaroslav Herman
jardah@fykos.org

Problem 38 . . . not-so-warm water 6 points
At a FYKOS trip, Petr stepped into the shower at midnight. When he turned on the water,
a fully filled boiler with a volume of V = 100 l started heating its contents. During this process,
water flows out to the shower at a rate of Q = 0.1 l·s−1, and cold water flows into the boiler at
the same rate from the supply. The temperature of the cold water from the supply is Ts = 20 ◦C,
which is also the initial temperature of the water in the boiler. How long will it take before
Petr can shower with warm water at a temperature of Tk = 40 ◦C? The boiler has a power
output of P = 15 kW. Assume that the incoming water mixes perfectly with the water in the
boiler. Petr is not a cold water lover.
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In addition to heating with power P , the volume V is effectively cooled by incoming water with
a cooling power Pch

Pch = −Qρc (T − Ts) ,

where T is the temperature of the water in the boiler, ρ is the density of the water, and c is its
specific heat capacity. On the other hand, the boiler is heated with power P .

We can express the heat stored in the boiler as τ = V ρcT . The change in heat per unit of
time is thus directly proportional to the change in temperature as

dτ

dt
= V ρc

dT

dt
,

which equals the total thermal power. Therefore, we have

V ρc
dT

dt
= P − Qρc (T − Ts) ,

which is a differential equation with separable variables for T as a function of time t. Its general
solution is

T = 1
Qρc

(
P − exp

(
− Q

V
(t + k)

))
+ Ts .

By substituting the initial condition T (0) = Ts, we find the constant k

c = −V

Q
ln P ,

so the particular solution to the equation is

T = P

Qρc

(
1 − exp

(
− Q

V
t
))

+ Ts .

The time tk will be attained when the water reaches the desired temperature Tk = 40 ◦C.
Substituting and simplifying, we get

tk = −V

Q
ln
(

1 − Qρc

P
(Tk − Ts)

)
.

After substituting numerical values, we obtain

tk
.= 8.0 · 102 s .

Thus, Petr will wait more than thirteen minutes for warm water.

Petr Sacher
petr.sacher@fykos.org
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Problem 39 . . . hourglass 6 points
Let us consider an hourglass which, instead of sand, contains water. The apex angle is 40 ◦,
and the gap between the chambers has a diameter of 2.0 mm. What must be the volume of one
chamber, if an initially fully filled chamber empties in 2 min after being flipped? The entire
double cone is rotationally symmetrical, and the two chambers are connected by a thin tube
along the side so that the pressure of the gases inside is not a factor. Neglect the surface tension
of water and assume that the connection between the chambers is small compared to the other
dimensions. Jarda made use of Anika K’s suggestion.

Let us denote the height h of the water level above the opening when the hourglass is in
a vertical position. Then, the outflow velocity, according to Torricelli’s law, is

v =
√

2gh .

The volumetric flow rate through an opening of diameter d is then

Q = πd
2

4 v = πd
2

4
√

2gh ,

so it depends on the height of the water level above the opening.
How does the volume of water in the upper half of the hourglass change in time? As

a function of the height h, its volume is

V (h) = 1
3πr

2h = 1
3π (h tan α)2 h ,

where we determined the cone radius in terms of h using the apex angle as r = h tan α,
with α = 20 ◦ being half of the apex angle. The rate of change of this volume over time is

dV

dt
= π3 tan2 α

dh3

dt
= π tan2 αh2 dh

dt
.

This quantity is directly comparable to the volumetric flow rate Q. Comparing these quan-
tities gives us

Q = −dV

dt
= πd

2

4
√

2gh = −π tan2 αh2 dh

dt
,

where the negative sign indicates that the volume of water in the upper part is decreasing. We
thus have a differential equation, which we solve by separation of variables:

πd2

4
√

2g dt = −π tan2 αh
3
2 dh ,

d2√
2g

4 tan2 α
t + C = −2

5h
5
2 ,

where the constant C is determinable from the initial condition that at time t = 0, the height
in the cone is at its maximum, which we denote as H. Thus, we find C = − 2

5 H
5
2 .

In the final part, we consider the point at which no water remains in the cone, i.e., h = 0.
It occurs at τ = 2 min, as given in the problem. Substituting the values for t and h into our
equation, we obtain

H =
(

5 d2√
2g

8 tan2 α
τ

) 2
5 .= 16 cm .
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However, we seek the required volume of one chamber, which is then simply

Vk = π3 (H tan α)2 H
.= 550 ml .

Jaroslav Herman
jardah@fykos.org

Problem 40 . . . rectified efficiency 6 points
We have a Graetz (diode) bridge assembled with diodes. These diodes do not conduct any
current until the voltage reaches Umin = 0.62 V, after which the current drops (and therefore
the diode’s resistance) becomes negligible. What is the maximum achievable efficiency (in %)
for a device connected to the rectified alternating current from this bridge, given that we use
a harmonic source with a maximum voltage of Umax = 1.5 V? We want to compare this efficiency
to the maximum efficiency of a circuit without any bridge. Karel was thinking about AC.

The appliance will achieve maximum power when its power factor is cos φ = 1, meaning it
behaves like an ideal resistor. Maximum efficiency will thus be the ratio of the power consumed
by the appliance to the total power delivered to the bridge. We also assume that the appliance’s
output power is equal to the power it consumed (which could be true for something like a heater).

Since we are dealing with a rectifier bridge, the appliance’s power period is half the source’s
period, which we denote as T . We only need to consider the time interval from t0 = 0 s
to t3 = T/2.

We can express the average power of the source as

w̄ =

∫ t3
t0

UmaxImax sin2 2πt
T

dt

T
2

= UmaxImax
1
π

∫ π

0
sin2 x dx

= UmaxImax
1
π

[1
2 (x − sin x cos x)

]π
x=0

= UmaxImax

2 ,

where we used the substitution x = 2πt/T , dt = T/(2π) dx.
At times when the voltage is lower than Umin, the power is zero; otherwise, it follows the

previous case. This yields integration limits t1 and t2:

2π t1

T
= arcsin Umin

Umax
⇒ t1 = T

2π arcsin Umin

Umax

.= 0.067 8T ,

t2 = T

2 − t1 = T

2

(
1 − 1
π

arcsin Umin

Umax

)
.= 0.432 T .

Moreover, we can calculate the average power consumed by the appliance as

w̄G =

∫ t2
t1

UmaxImax sin2 2πt
T

dt

T
2

.

The maximum efficiency is then

η = w̄G

w̄
=

∫ t2
t1

UmaxImax sin2 2πt
T

dt

T
2

UmaxImax
2

.
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We can factor out the maximum voltage and current, so the result depends only on the
integration over time or the substituted variable x:

η = 4
T

∫ t2

t1

sin2 2πt
T

dt = 2
π

∫ π−arcsin Umin
Umax

arcsin Umin
Umax

sin2 x dx
.= 0.968 = 96.8 % .

Thus, the maximum efficiency with the bridge is approximately 96.8 % of the theoretical
maximum efficiency.

Karel Kolář
karel@fykos.org

Problem 41 . . . all the same 6 points
Imagine a planet where a sidereal day is as long as it is on Earth. Furthermore, on the latitude
where Prague is located on Earth, the gravitational acceleration is also the same. However, the
radius of the planet is ten times larger than the Earth’s radius. What is its average density?
Consider both planets to be perfectly homogeneous spheres.

Jarda was in a wrong classroom, but he didn’t realize.

Weight is the vector sum of the gravitational and centrifugal forces. The magnitude of the
gravitational force is

FG = MmG

R2 = 4πRρ

3 Gm ,

where M is the mass of the planet, m is the mass of the person, G is the gravitational constant,
R is the radius of the planet, and ρ is its average density. The direction of action is towards
the center of the planet.

The magnitude of the centrifugal force at the 50th parallel (where Prague is located) is

Fo = mω2r = m
(2π

T

)2
R cos 50 ◦ ,

where ω is the angular velocity of the rotation, T = 86 164 s is the length of a sidereal day, and
r is the distance from the axis of rotation for a point on the 50th parallel.

The magnitude of gravitational acceleration can be expressed in both cases using the law
of cosines as

g = 1
m

√
F 2

G + F 2
o − 2FGFo cos 50 ◦ .

We will use the subscript ⊕ to denote Earth’s parameters and the subscript p for the planet’s
parameters, where they differ (e.g., radius and density). From the equality of gravitational
acceleration magnitudes, we obtain the equation

F 2
G⊕ + F 2

o⊕ − 2FG⊕F⊕ cos 50 ◦ = F 2
G p + F 2

o p − 2FG pFo p cos 50 ◦ .

By substituting the forces and performing several transformations, we obtain(
R⊕

Rp

)2((4πρ⊕

3 G
)2

+ cos2 50 ◦
((2π

T

)4
− 32π3ρ⊕

3T 2 G

))
=

=
(4πρp

3 G
)2

+
((2π

T

)2
cos 50 ◦

)2

− 32π3ρp

3T 2 G cos2 50 ◦ .
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The left side of the equation is known, so we denote it as L. For numerical evaluation, this
constant can be expressed using data from the constant list as

L =
(

R⊕

Rp

)2
((

M⊕

R3
⊕

G

)2

+ cos2 50 ◦
((2π

T

)4
− 8π2M⊕

R3
⊕T 2 G

))
= 2.354 80 · 10−14 s−1 .

We are solving only for ρp in the previous equation, which appears squared on the right-hand
side. Rearranging the equation, we get(4π

3 G
)2

ρ2
p − 32π3G cos2 50 ◦

3T 2 ρp −

(
L −

((2π
T

)2
cos 50 ◦

)2
)

= 0 ,

from which the quadratic equation solution gives

ρp = 3

4π2 cos2 50 ◦ +

√
16π4 cos4 50 ◦ + T 4

(
L −

((
2π
T

)2 cos 50 ◦
)2
)

4GπT 2 = 557 kg·m−3 ,

where we have chosen the + sign in the formula to ensure the density is a positive number.

Jaroslav Herman
jardah@fykos.org

Problem 42 . . . suspended 6 points
Consider two suspension points at the same height at a distance d = 50.0 cm apart. On the
first one, we hang a weight of mass m1 = 1.30 kg from a suspension of length l1 = 60.0 cm. On
the other, we hang a weight of mass m2 = 2.10 kg from a suspension of length l2 = 45.0 cm.
We then connect both weights with a rope of length l = 30.0 cm. At what distance below the
suspension plane will the lighter weight be located? Dodo was hanging the laundry.

The weights will stabilize at an equilibrium position that minimizes the sum of their potential
energies. This occurs when their center of gravity is at the lowest possible position. Any
deviation of any of the weights from the vertical plane given by the attachment points evidently
increases this energy. Thus, we are solving a 2D problem where we minimize the height of
the point between the weights at a distance of lm2/ (m1 + m2) from the first weight. This
problem may be solved mathematically, but it leads to a complex expression that must be
solved numerically.

Let us begin with the numerical solution right away – we will draw the entire problem in
Geogebra. In the figure 3 the points A and C are the suspension points, G and H are the
weights and K is the center of gravity. Points G and H must be at a minimum on the taut
ropes, that is on circles with appropriate radii. For a given point G representing the position
of the lighter mass, we construct a circle of radius l. This intersection with the circle (C, l2)
defines the position of the heavier mass H. However, there can be two such intersections, giving
us a second solution (in red).3 The great advantage of Geogebra is that a graphic constructed
this way is movable. When moving the point G and with the center of gravity path turned on,

3The blue color shows the positions of the center of gravity with H to the right of the suspension C, which
are clearly not configurations corresponding to the minimal energy, as l < d.
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we notice that the set of all possible centers of gravity is complex in shape. We are interested
in the construction with the center of gravity as low as possible – at a distance of t = 49.6 cm
from the plane of the suspension, at which the point G is at depth h1 = 57.7 cm below the
suspension.

Figure 3: Problem redrawn in Geogebra

Jozef Lipták
liptak.j@fykos.org

Problem 43 . . . border hill with a lookout tower 7 points
Lego is at a lookout tower between the Czech Republic and Slovakia. He hangs a pulley on the
tower, over which he throws a rope, with carts at the ends having masses mC = 24 kg (placed
on the Czech side) and mS = 15 kg (on the Slovak side). The hill has a slope of αS = 10 ◦ on the
Slovak side and αC = 14 ◦ on the Czech side. The rope forms angles βS = 15 ◦ and βC = 11 ◦

with the hill. What is the acceleration of the cart on the Slovak side, assuming all friction is
neglected? If the cart moves upward toward the Czech side, enter a positive value; if downward,
a negative one. The pulley and rope are massless, and the rope is perfectly inelastic.

αS αC

βS
βC

mC

mS

Figure 4: The scheme of the hill.
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Lego, of course, imagined the vehicles from FYKOS camp.

In the direction parallel to the slope, the weight of the Slovakian cart has a component mSg sin αS.
If we denote the tension force of the rope as T , its projection in the direction parallel to the
slope is T cos βS. The situation with the Czech trolley is similar. For accelerations in the di-
rection parallel to the slope, denoted as aS and aC (both with a positive direction upward), we
obtain the following equations of motion:

mSaS = T cos βS − mSg sin αS

mCaC = T cos βC − mCg sin αC .

Apart from the unknown accelerations, the equations also contain the tensile force of the
rope, which we need to determine. The third equation follows from the rope’s inextensibility:
the rope cannot stretch or shorten, which means it remains taut. If the trolley on the Slovak
side is moved upward by a small amount dxS along the slope, the length of the rope on the
Slovak side decreases. What is the decrease in length? We can use a method similar to
diffraction on a grating. With sufficiently small displacement, the direction of the rope does
not change significantly, so the length of the rope on this side decreases by the projection of
the displacement dxS into the direction of the rope, which is dxS cos βS. We arrive at the same
result using the cosine rule. If we denote the original length of the rope as lS, the new length
will be shorter by:

lS −
√

l2
S + dx2

S − 2lS dxS cos βS ≈ lS − lS

√
1 − 2dxS

lS
cos βS ≈ dxS cos βS ,

where we consider only the first-order approximation.
On the Czech side, we get the same result. From the inextensibility condition, it holds that

the change in the length of the rope on one side is equal to the change in the length on the
other side times minus one, so dxS cos βS = − dxC cos βC. After differentiating this expression
with respect to time twice, we obtain the equality for accelerations

aS cos βS = −aC cos βC .

This is the third equation we needed to solve the system of equations. Subsequently, we multiply
the first equation of motion by cos βC/ cos βS and subtract it from the second one, eliminating T :

mCaC − mSaS
cos βC

cos βS
= mSg sin αS

cos βC

cos βS
− mCg sin αC .

Then, we simply substitute for aC from the equation derived from the inextensibility of the
rope, i.e., aC = −aS

cos βS
cos βC

, and solve for aS:

−mCaS
cos βS

cos βC
− mSaS

cos βC

cos βS
= mSg sin αS

cos βC

cos βS
− mCg sin αC

aS = g
mC sin αC − mS sin αS

cos βC
cos βS

mC
cos βS
cos βC

+ mS
cos βC
cos βS

= 0.80 m·s−2 .

However, an important detail remains. We supposed that the trolleys would accelerate, but
theoretically, the trolleys could accelerate upward. If the trolley on one side is very heavy
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and the angle β on the other side is high enough, the trolley could be lifted off the ground.
How can we determine this? We calculate projections of the weight and tensile force acting on
the trolley in a direction vertical to the slope. If this projection points downward, the trolley
presses against the ground, and it reacts with normal force, causing the trolley to move as we
assumed. On the other hand, if the projection points upward, our assumption was incorrect,
and the trolley would accelerate upwards.

Let’s calculate backward the tensile force T by substituting back into one of the equations
of motion:

mSg
mC sin αC − mS sin αS

cos βC
cos βS

mC
cos βS
cos βC

+ mS
cos βC
cos βS

= T cos βS − mSg sin αS ,

mSg

(
mC sin αC − mS sin αS

cos βC
cos βS

mC
cos2 βS
cos βC

+ mS cos βC
+ sin αS

cos βS

)
= T ,

mSg
mC sin αC + mC sin αS

cos βS
cos βC

mC
cos2 βS
cos βC

+ mS cos βC
= T ,

mSmCg
sin αC cos βC + sin αS cos βS

mC
cos2 βS
cos βC

+ mS cos2 βC
= T .

The component of this force in the direction perpendicular to the ground is on the Slovak
side T sin βS (with the positive direction “upward”). The component of gravity in this direction
is −mSg cos αS. The sum of these forces is:

mSmCg sin βS
sin αC cos βC + sin αS cos βS

mC cos2 βS + mS cos2 βC
− mSg cos αS = −135 N ,

which is negative, meaning that the trolley is pressing against the ground. The trolley on the
Czech side accelerates downhill, indicating that the rope does not lift the trolley off the ground,
something that can be confirmed by an analogous calculation. The result is therefore the same
as the calculation above, so

aS = 0.80 m·s−2 .

Šimon Pajger
legolas@fykos.org
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Problem 44 . . . loose ring 6 points

r
2R

T =?A thin ring with radius r = 5.0 cm is threaded onto a fixed horizontal
rod with a circular cross-section of radius R = 2.0 cm. Determine the
period of the small oscillations after a displacement from the equilib-
rium position. The ring does not slip relative to the rod.

Jarda is already thinking about a wedding.

The problem may not seem very straightforward at first glance be-
cause the point of contact between the larger ring and the smaller one
changes during each oscillation. It is therefore not immediately clear
how the center of mass of the ring moves and how quickly the ring
rotates relative to its center of mass. Let us first describe the motion of the ring.

Consider the point of contact of the two objects, which deviates from the vertical by an
angle φ, measured from the center of the rod. The center of the ring must lie on the line
connecting this point of contact and the center of the rod, since the two circles are touching.
Therefore, the center of the ring is at a distance of R − r from the center of the rod. However,
this distance is independent of the angle φ. The center of the ring thus lies on a circle of
radius R − r for any φ. To describe the velocity of the ring’s center of mass, let us define φ̇, the
time derivative of the angular displacement from equilibrium. Then the velocity of the ring’s
center of mass is simply

vT = (R − r) φ̇ .

Additionally, the ring rotates around its axis. However, it does not rotate with the same
angular velocity as its center of mass rotates around the center of the rod. This is because
the larger ring rolls on the surface of the smaller one. The point of contact must cover the
same distance on the larger ring as on the smaller cylinder. If the point of contact moves on
the smaller cylinder by ∆φ, this corresponds to r∆φ. For the center of the ring, however, this
distance represents only an angle of ∆φr/R, and thus the angle by which the ring rotates is
only Φ = φ − φr/R. The angular velocity of the ring’s rotation is then

Φ̇ =
(

1 − r

R

)
φ̇ .

We have described the motion of the ring on the cylinder. The period of small oscillations
can be found by balancing the kinetic and the potential energy. The kinetic energy is the sum
of the translational energy of the cylinder’s center of mass and its rotational energy

Ek = 1
2mv2

T + 1
2JΦ̇2 = 1

2

(
m (R − r)2 φ̇2 + mR2

(
1 − r

R

)2
φ̇2
)

= 1
22m (R − r)2 φ̇2 .

The potential energy also depends on the angle, based on the position of the ring’s center
of mass, as

Ep = mg (R − r) (1 − cos φ) ≈ 1
2φ2mg (R − r) ,

where we used the small-angle approximation near φ = 0, where cos φ ≈ 1−φ2/2. Thus, we see
that the potential energy increases with the square of the coordinate, while the kinetic energy
is proportional to the square of the derivative of this coordinate. This situation is entirely
analogous to motion in a harmonic oscillator, except that instead of the position x, we use the
angle φ, and the proportionality constants are different.
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If the energy of a harmonic oscillator is

ELHO = 1
2mẋ2 + 1

2kx2

and the period of oscillations is
TLHO = 2π

√
m

k
,

then in our system, the energy is

E = 1
22m (R − r)2 φ̇2 + 1

2mg (R − r) φ2 ,

and the period is

T = 2π

√
2m (R − r)2

mg (R − r) = 2π
√

2 (R − r)
g

= 0.49 s .

Jaroslav Herman
jardah@fykos.org

Problem 45 . . . double detection 7 points
Jindra is measuring the decay of a radioactive isotope using an energy-sensitive detector. He
knows that one decay releases the energy E. During the measurement time T = 300 s he detects
N1 = 9 728 350 events with energy E and N2 = 166 545 events with energy 2E. The number
of events with energy 3E or higher is negligible. Particle detectors have a so-called dead time
during which they process the signal from the previous particle. Specifically, Jindra’s detector
also records particles that arrive during the dead time, but it cannot detect them as separate
particles, instead, it adds their energy to the first particle. What is the dead time of Jindra’s
detector? Jindra is counting decays.

The dead time during which detectors process the signal from the previous particle can manifest
in various ways. For example, the detector may not be able to receive any additional signals
at all, and all events occurring during the dead time will be lost. In our example, it is evident
that the detector does receive signals even during the dead time, but it adds their energy to the
currently processed signal and cannot distinguish them as separate events. N1 detections with
energy E correspond to single hits, and N2 detections with energy 2E correspond to double
hits, where a new particle enters the detector during the dead time while the detector is still
processing the signal from the previous particle.

The average particle frequency is

f = N1 + 2N2

T
.

We denote the yet-unknown dead time as τ . Since N2 ≪ N1, the number of events n during
the dead time after a hit can be described by the Poisson distribution

P (n) = (fτ)n

n! e−fτ .
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The most likely scenario is n = 0, meaning no additional hits occur during the dead time, with
a probability of

P (0) = e−fτ ≈ 1 − fτ,

where we used the approximation fτ ≪ 1 =⇒ e−fτ ≈ 1. The probability that n = 1 hits
occur during the dead time is

P (1) = fτe−fτ ≈ fτ,

where we used the same approximation.
Now let us describe the problem using the language of the probability theory. Each particle

initiates an interval of length τ , during which no additional particle arrives with probabil-
ity P (0) = 1 − fτ , and exactly one additional particle arrives with probability P (1) = fτ . The
number of “random trials”, i.e., the number of initiated intervals of length τ , during Jindra’s
measurement was

N = N1 + N2.

The number of double events during the entire measurement of duration T was

N2 = NP (1) = Nfτ = (N1 + N2)(N1 + 2N2)
T

τ.

The dead time of Jindra’s detector is thus

τ = N2

(N1 + N2)(N1 + 2N2)T = 5.02 · 10−7 s .= 500 ns.

Jindřich Jelínek
jjelinek@fykos.org

Problem 46 . . . back to the U-tube 6 points
Let us consider a U-tube with an internal cross-sectional area 0.80 cm2, into which we pour 110 ml
of water. The length of each of the symmetrically placed arms of the tube is 90 cm. We place
an inflated balloon over one end of the tube, causing the water level in the other arm to rise
by ∆h = 4.0 cm. How much do we need to compress the balloon, i.e., by how much do we need
to decrease its volume, so that the water starts overflowing from the other arm? The volume of
the balloon just before compression is V0 = 750 ml. Neglect the volume of the horizontal part
and the curved sections of the U-tube. Jarda was devising an experiment for FYKOS.

At the interface between water and air in the arm with the balloon, the pressures must be
equal. On one side acts the hydrostatic pressure of the water with height 2∆h, balancing the
air pressure from the inflated balloon. This pressure must be ph = ρg2∆h

.= 783 Pa.
For the water to start flowing out, the water level in the arm without the balloon must rise

to a height l, so the height difference between the arms must be

δH = l − (V/S − l) = 2l − V/S = 42.5 cm .

The required pressure is therefore

pH = ρg∆H = ρg (2l − V/S) .= 4 160 Pa .
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The change in pressure is caused by compressing the balloon, reducing its volume. The
volume of air after placing the balloon in the arm is

Vh = V0 + S (l − V/(2S) + ∆h) ,

where V0 is the volume of the balloon. After compression, we denote the volume of the balloon
as VB , so the total air volume is

VH = VB + 2lS − V .

From the ideal gas law, we have Vhph = VHpH , leading to

∆V = VB − V0 = Vh
ph

pH
− 2lS + V − V0 ,

∆V =
(

V0 + S
(

l − V

2S
+ 2∆h

)) 2∆h(
2l − V

S

) − 2lS + V − V0 = −640 ml .

Hence, the volume of the balloon needs to be reduced by 640 ml.

Jaroslav Herman
jardah@fykos.org

Problem 47 . . . acceleration of an idealized car 6 points
Let us consider a car with a power output of P = 44 kW and a mass of m = 1 400 kg, which
is subjected to a total resistive force of F = 950 N (we assume this force is constant – as at
low speeds, air resistance is negligible). In how much time will the car accelerate from 0 to
vf = 18 km·h−1? Lego sometimes ponders like this.

We can determine the acceleration by dividing the total force by the car’s mass. Moreover, we
can calculate the car’s power as the force it exerts on the road multiplied by its velocity. Given
that we know the power, if the car’s velocity is v, then the driving force is P/v. To find the
total force, we must subtract the opposing drag force F . Thus, we construct the differential
equation as

P

v
− F = m

dv

dt
.

We will solve this equation using the method of separation of variables

dt = m
dv

P
v

− F∫ tf

0
dt = m

∫ vf

0

dv
P
v

− F
,

tf = m
[
− v

F
− P

F 2 ln(P − F v)
]vf

0
,

tf = m
(

P

F 2 (ln P − ln(P − F vf)) − vf

F

)
,

tf = m

F

(
P

F
ln
(

P

P − F vf

)
− vf

)
.= 0.43 s .

We observe that time is proportional to the mass of the car. The time diverges for P = F vf ,
indicating the limit where the car accelerates to its maximum achievable speed, at which the
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driving and opposing forces balance out and the net force approaches zero. The subtraction of
vf might seem surprising at first glance, but if we look more closely at the first term, we can
calculate that vf is the first term of its Taylor series expansion and it makes perfect sense that
it should drop out since this term does not depend on P at all. As the only term left will be
the second term of the Taylor expansion, the resistive force F will exactly cancel out and then
for the other terms the force will already be in the numerator.

Šimon Pajger
legolas@fykos.org

Problem 48 . . . fishing 7 points
A point particle with a mass of m = 1.85 kg lies on a horizontal surface. It is connected to a tight
rope that ends at a winch located at a horizontal distance L = 20.4 m from the point particle
and at a height H = 6.35 m. The winch starts winding the rope at a speed of v = 3.25 m·s−1.
How long will it take for the point particle to lift off from the surface if the coefficient of friction
between it and the surface is f = 0.415? Jarda was winding up a cable from his mower.

First, we express the position of the mass point as a function of time from the start of the
unwinding t

x(t) =
√

(l0 − vt)2 − H2 ,

where l0 =
√

H2 + L2 is the initial length of the rope. By differentiating the position, we obtain
the velocity of the mass point

vx(t) = dx(t)
dt

= (−v (l0 − vt)) 1√
(l0 − vt)2 − H2

,

and by differentiating the velocity with respect to time, we find the acceleration ax(t)

ax(t) = dvx(t)
dt

= v2√
(l0 − vt)2 − H2

(
1 − (l0 − vt)2(

(l0 − vt)2 − H2
)) .

We then find the net force acting on the mass point in the horizontal direction as

Fx(t) = max(t) = −Tx(t) + f (mg − Ty(t)) ,

where Tx(t) is the horizontal component of the tension in the rope. We can find this using the
acceleration and the knowledge of the frictional force. Once we know the horizontal component
of the tension, we can calculate the vertical component using the angle between the rope and
the horizontal plane

Ty(t) = Tx(t) tan α = H

x(t)Tx(t) .

We substitute this into the previous equation and obtain

Fx(t) = max(t) = −x(t)
H

Ty(t) + (mg − Ty(t))) f ⇒ Ty(t) = mgf − max(t)
x(t)
H

+ f
.
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When Ty(t) > mg is satisfied, the object lifts off the surface. We substitute into the equation
and simplify it

Ty(t) = mg = H

mgf − m
(

v2√
(l0−vt)2−H2

(
1 − (l0−vt)2

((l0−vt)2−H2)

))
√

(l0 − vt)2 − H2 + fH
,

g
(
(l0 − vt)2 − H2) = Hv2

(
(l0 − vt)2(

(l0 − vt)2 − H2
) − 1

)
,

g

Hv2

(
(l0 − vt)2 − H2)2 = H2 ,(
(l0 − vt)2 − H2) =

√
H3v2

g
,

⇒ t =
l0 −

√√
H3v2

g
+ H2

v
= 4.25 s .

The mass point lifts off the surface at t = 4.25 s.

Jaroslav Herman
jardah@fykos.org

Problem 49 . . . the oppressed air 8 points
What is the minimal volume at temperature tv = 25.0 ◦C to which V1 = 1.00 m3 of air at
normal pressure pa and at same temperature can be compressed? We have a water boiler of
volume V = 100 l and temperature tb = 80.0 ◦C as an energy source, and a large lake of water
at a temperature tj = 5.00 ◦C as a cooler. Assume that the air behaves as a monatomic ideal
gas. All hypothetical machines used to compress the gas must return to their original state at
the end (it is not necessary to consider the specific design of these auxiliary machines to solve
the problem). Dodo needed compressed air.

From the laws of thermodynamics, we know that when extracting heat from a substance, there
is a limit to the amount of work that can be derived from this heat, if we want the machines
used to operate cyclically. Furthermore, it turns out that this work is maximized when all
considered processes are reversible.

The first intuition in solving our problem might be to design such a reversible process. Here,
we would most likely need to connect a Carnot engine4 between the boiler and the lake and
use the work to compress the air. The compression must again be reversible, which can be
achieved, for example, through an isothermal process (an isothermal process is useful because
the air is supposed to have the same temperature at the end). During isothermal compression,
heat must be extracted from the air. This heat can again be used to perform work! Therefore,
we would need to use the same reasoning: to ensure that all processes are reversible, we would
have to attach another Carnot engine to the air, further compress it, and transfer the waste
heat to the lake.

4A Carnot engine is an example of a reversible engine that extracts heat Q1 from one substance at temper-
ature T1, performs work W , and releases waste heat Q2 at temperature T2. One of the important results of
thermodynamics is that the efficiency of such a reversible process is W/Q1 = 1 − T1/T2.
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In such a construction, we know the efficiencies of the Carnot engines and the laws for an
ideal gas, so we should be able to calculate the resulting pressure. However, this construction is
very complex, and the procedure would be painstaking. Fortunately, there is a better method
called the maximum work theorem, which leverages the fact that the total entropy remains
unchanged in reversible processes.

When using the maximum work theorem, we do not need to focus on the course of the entire
process, but only on the initial and final states of the entire system (in this case, the boiler,
lake, and air). We know that the maximum work (i.e., the maximum compression of the gas)
is obtained if the total entropy does not change. Additionally, we still have the general validity
of the law of conservation of energy.

Let us now gradually express the respective changes in energy and entropy for the individual
parts of our system. We start with the lake. When the waste heat Q is released, the volume of
the water does not change, so no work is done. The change in internal energy is therefore ∆Uj =
= Q. Additionally, the lake has a very large heat capacity. Its temperature thus does not change,
and from the relation for entropy change,

dS = δQ

T

we have that the entropy change of the lake is ∆Sj = Q/Tj, where Tj is the temperature of
the lake in Kelvin, i.e., Tj

.= 278 K (the letter T with the corresponding index will henceforth
always denote the thermodynamic temperature of the given system).

Let us look at the boiler. It starts at temperature Tb and ends at the temperature of
the lake Tj. Again, no work is done during heat extraction, but the water has a finite heat
capacity C = cm = cρV

.= 417.6 kJ·K−1. The internal energy changes by ∆Ub = C(Tb − Tj).
For the change in entropy, we have

dS = δQ

T
= C

dT

T
,

which, upon integration from the initial to the final temperature, gives

∆Sb = C · ln Tj

Tb
.

The air remains. We know that the final temperature must be the same as the initial one, so
the internal energy does not change (we assume the air is an ideal gas and that internal energy
depends only on temperature). The equation for the conservation of energy is

Q − C(Tb − Tj) = 0 .

We now have everything needed to numerically calculate the change in the entropy of the
air because, from the entropy conservation equation,

Q

Tj
− C ln Tb

Tj
+ ∆Sv = 0

we easily express

∆Sv = −C

(
Tb − Tj

Tj
− ln Tb

Tj

)
= −12.9 kJ·K−1

51



Physics Brawl Online 2024 14th year November 20, 2024

The entropy change is therefore negative, which corresponds precisely to the expectation that
we compressed the gas without changing the temperature.

What remains is to express the change in entropy of the ideal gas as a function of the volume
change. Here, we can find the expression for the entropy of a single-component ideal gas online:

S = Ns0 + NkB ln
[(

U

U0

)c ( V

V0

)(
N0

N

)c+1
]

,

where s0 is a constant such that N0s0 is the entropy of a reference ideal gas with energy U0,
volume V0, and number of particles N0 (in this area of thermodynamics, only entropy changes
are important, so we do not need to think particularly about these reference values).

From the expression for entropy, it is easy to see that if only V changes, the resulting change
of entropy will be

∆Sv = NkB ln V2

V1
= paV1

Tv
ln V2

V1
,

from which we simply calculate

V2 = V1 exp
(

Tv∆Sv

paV1

)
= 3.22 · 10−17 m3 = 3.22 · 10−8 mm3 ,

which corresponds to a compression into a container of approximately 1 μm dimensions.
How should we proceed if the formula for the entropy of an ideal gas were not available?

We could partially derive it. We know that the state of the gas (and thus its entropy) is
determined by three (suitable) state variables. In our case, we know the temperature and
number of particles at the end of the process, so that suffices to express the change in entropy
as a function of the volume change.

Consider an isothermal process. It is suitable because neither the temperature nor the
number of particles change, which is precisely what we want. During an isothermal process,
some heat Q1, equal to the work done, is extracted from the gas. For the work in an isothermal
process, we have

W = −
∫ V2

V1

p dV = paV1 ln V1

V2
,

which we substitute into the entropy change ∆Sv = −Q1/Tv, yielding the same result. Note
that the isothermal process in this procedure is merely a tool for deriving the relationship for
the entropy change. In reality, we are not claiming that compression in our problem must occur
isothermally. This is better seen from the procedure that directly uses the entropy of the ideal
gas.

Jiří Kohl
jiri.kohl@fykos.org

Problem 50 . . . optimally excited quantum oscillator 7 points
Lego created a one-dimensional quantum linear oscillator with ω = 1.17 · 1013 s−1. He connects
it to a thermal reservoir of temperature T and waits until equilibrium is reached. What should
this temperature be to maximize the probability of the electron occupating the first excited
state? According to Lego, the name of this problem is very photosynthetic.
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When equilibrium is reached, the probabilities of the states will be given by the Boltzmann
distribution

pn = 1
Z

e− En
kBT ,

where kB is the Boltzmann constant and T is the temperature of the thermal reservoir with
which the system is in equilibrium. The partition function Z is, among other things, a normal-
izing constant whose magnitude can be obtained from the condition

∑∞
n=0 pn = 1

Z =
∞∑

n=0

e− En
kBT =

∞∑
n=0

e− ℏω(n+1/2)
kBT = e− ℏω

2kBT

∞∑
n=0

e− ℏω
kBT

n = e− ℏω
2kBT

1 − e− ℏω
kBT

,

where in the last step we just sum up the geometric series. Thus, the probability of the electron
occupating the first excited state is

p1 = 1 − e− ℏω
kBT

e− ℏω
2kBT

e− ℏω(1+1/2)
kBT =

(
1 − e− ℏω

kBT

)
e− ℏω

kBT ,

and our task is to find out for which T this value will be maximal.
We can straightforwardly differentiate with respect to T , set the result equal to 0, and get

T for which p1 is maximal from the obtained equation. However, for the lazier among us who
don’t feel like using the chain rule, here’s a trick: substitute x = e− ℏω

kBT , then p1 = (1 − x)x.
This is the parabola that has a maximum value for x = 1/2. Substituting the substitution back
in gives us the equation for T

1
2 = e− ℏω

kBT ⇒ T = ℏω

kB ln 2 = 129 K ,

for this temperature, the first excited state will be occupied with the highest probability.

Šimon Pajger
legolas@fykos.org

Problem X.1 . . . floating solar sail 4 points
What would the surface density of a solar sail need to be for the pressure of the solar radiation
to exactly balance the gravitational force of the Sun? The surface of a solar sail is perfectly
reflective, and the plane of the sail is perpendicular to the Sun.

Jindra was interested, what area he would need to expand to freely float in the Solar system.

An incoming photon with momentum pbefore = E/c strikes the sail and reflects, changing its
momentum to pafter = −E/c. The total momentum must be conserved, so the sail’s momentum
changes by ∆psail = pbefore − pafter = 2E/c. If we consider the total change in momentum of
all incoming photons per unit of time, we obtain the force

Frad = 2IS

c
,

where I is the irradiance (power consumption per unit of area), S is the area of the sail and
c is the speed of light. The irradiance at a distance r from the center of the Sun is

I = L

4πr2 ,
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where L = 3.83 · 1026 W is the Sun’s luminosity. We observe that the radiation force is propor-
tional to 1/r2, just like the gravitational force. The two forces come to a balance when

Frad = LS

2πcr2 = GMm

r2 ,

where G is the gravitational constant, M = 1.99 · 1030 kg is the Sun’s mass, and m is the total
mass of the solar sail. The critical area density of the solar sail is

m

S
= L

2πcMG
= 1.531 · 10−3 kg·m−2 .= 1.53 g·m−2.

Jindřich Jelínek
jjelinek@fykos.org

Problem X.2 . . . solar sail on the way to the stars 5 points
Consider a solar sail of mass m = 10 kg and a sail of area S = 10 000 m2. The sail begins
its journey in Earth’s orbit with zero initial velocity relative to the Sun. What will be the
magnitude of the speed of the solar sail at infinity? The surface of a solar sail is perfectly
reflective, and the plane of the sail is always perpendicular to the Sun.

Jindra wanted to expand so much, that he could fly to the stars.

The solar sail is subjected to radiation pressure acting away from the Sun and the gravitational
force pulling towards the Sun. The radiation force acting on a perfectly reflective sail of area S,
illuminated perpendicularly, is

F = 2IS

c
= LS

2πcr2 ,

where L = 3.83 · 1026 W is the luminosity of the Sun, c is the speed of light, and r is the
distance from the center of the Sun. The resulting force acting on the sail is given as the
difference between the gravitational force (directed towards the Sun) and the radiation force
(directed away from the Sun)

F (r) = LS

2πcr2 − GMm

r2 ,

where G is the gravitational constant, M = 1.99 · 1030 kg is the mass of the Sun, and m is
the mass of the sail. The radial attractive force F (r) = −km/r2 is thus modified compared to
classical celestial mechanics by the constant

k = GM − LS

2πcm
= −7.051 · 1019 m3·s−2 .

After substituting the given values, we can confirm that k < 0, meaning the force is repulsive.
The potential energy in this field with respect to the distance r from the Sun is given as

Ep = −km

r
.

The probe’s initial kinetic energy is zero. Its initial potential energy is

Ep,0 = −km

aZ
,
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where aZ = 1.496 · 1011 m is the radius of Earth’s orbit. At infinity, the potential energy of the
probe is zero, so all initial potential energy will convert into kinetic energy, leading to

1
2mv2 = −km

aZ
,

v =
√

− 2k

aZ
= 3.070 · 104 m·s−1 .= 30.7 km·s−1 .

Thus, the magnitude of the speed of the solar sail at infinity is v = 30.7 km·s−1.

Jindřich Jelínek
jjelinek@fykos.org

Problem X.3 . . . solar sail on the way to the stars II 6 points
Consider a solar sail of a mass of m = 10 kg and a sail of area S = 10 000 m2. Initially, the
solar sail orbits the Sun along Earth’s orbit, but far enough to be outside Earth’s gravitational
influence. Suddenly, it unfurls its sail very quickly. What will the speed of the solar sail be at
infinity? The surface of the solar sail is perfectly reflective, and the plane of the sail is always
oriented perpendicular to the Sun. Assume Earth’s orbit is circular.

Jindra felt that the Earth was attracting him too strongly.

The solar sail is subjected to radiation pressure acting away from the Sun and the gravitational
force pulling towards the Sun. The total force is

F (r) = LS

2πcr2 − GMm

r2 ,

where L = 3.83 · 1026 W is the luminosity of the Sun, S is the area of the solar sail, c is the
speed of light, G is the gravitational constant, M = 1.99 · 1030 kg is the mass of the Sun, m is
the mass of the sail and r is the distance from the center of the Sun. This relation is derived
in detail in the problem titled “solar sail on the way to the stars”.

The radial attractive force F (r) = −km/r2 is modified compared to classical celestial me-
chanics by the constant

k = GM − LS

2πcm
= −7.051 · 1019 m3·s−2 .

By substituting the given values, we verified that k < 0, meaning the force is repulsive.
The potential energy in this field, depending on the distance r from the Sun, is

Ep = −km

r
.

Initially, the probe was moving along a circular orbit with a radius aZ = 1.496 · 1011 m, so its
initial velocity is

v0 =
√

GM

aZ
.

The initial kinetic energy of the probe is

Ek,0 = 1
2mv2

0 = 1
2m

GM

aZ
.
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The initial velocity vector is perpendicular to the direction towards the Sun. The initial po-
tential energy is

Ep,0 = −km

aZ
.

At infinity, the potential energy of the probe will be zero, therefore all the initial potential
energy will convert into kinetic energy. Due to the conservation of angular momentum, the
perpendicular component of the velocity will be zero at infinity, and the velocity vector will be
radial

1
2mv2 = −km

aZ
+ 1

2m
GM

aZ
,

v =
√

− 2k

aZ
+ GM

aZ
= 4.278 · 104 m·s−1 .= 42.8 km·s−1 .

Thus, the velocity of the solar sail at infinity will be v = 42.8 km·s−1.

Jindřich Jelínek
jjelinek@fykos.org

Problem X.4 . . . solar sail on the way to Mars 7 points
What is the necessary surface density of a solar sail, in order for it to travel from Earth’s orbit
to Mars’ orbit via a Hohmann transfer orbit? The solar sail initially orbits the Sun in the
same orbit as Earth, then deploys its sail. The surface of the solar sail is perfectly reflective,
and the sail plane is always oriented perpendicular to the Sun. The solar sail has no rocket
engines and relies solely on its reflectivity. Ignore Earth’s gravitational influence at the start
of the solar sail’s journey, and assume the orbits of both Earth and Mars around the Sun are
circular. Jindra wanted to surprise Teri with a problem about the Hohmann transfer orbit.

The Hohmann trajectory between two circular orbits is a half-ellipse with a periapsis at the
inner orbit and an apoapsis at the outer orbit. The Hohmann trajectory is fuel-efficient and is
used for missions to nearby planets such as Venus and Mars. For more distant planets in the
solar system, such as Jupiter or Saturn, gravitational maneuvers are used.

The solar sail is subjected to radiation pressure acting away from the Sun and gravitational
force pulling towards the Sun. The total force is

F (r) = LS

2πcr2 − GMm

r2 ,

where L = 3.83 · 1026 W is the luminosity of the Sun, S is the area of the solar sail, c is the
speed of light, G is the gravitational constant, M = 1.99 · 1030 kg is the mass of the Sun, m is
the mass of the sail, and r is the distance from the center of the Sun. This relation is derived
in detail in the problem titled “solar sail on the way to the stars”.

The radial attractive force F (r) = −km/r2 is modified compared to classical celestial me-
chanics by the constant

k = GM − LS

2πcm
= −7.051 · 1019 m3·s−2 .
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However, this new force is still directly proportional to 1/r2, just like the classical gravitational
force, so the sail will move along a conic section, just as in ordinary celestial mechanics. Only
the constant k is smaller.

The potential energy of the sail at a distance r from the Sun is

Ep = −km

r
.

The total mechanical energy on the elliptical orbit is analogous to the gravitational field

E = −km

2a
,

where a is the semi-major axis of the ellipse. For the Hohmann trajectory between Earth’s and
Mars’s orbits, the distance at periapsis is rp = aZ = 1.496 · 1011 m, the distance at apoapsis
is ra = aM = 2.279 · 1011 m and the semi-major axis is a = (aZ + aM)/2. The velocity at the
periapsis is the same as Earth’s orbital velocity

vp =
√

GM

aZ
.

However, once the probe unfolds the sail, the constant of the attractive force k changes, and
the probe’s orbit shifts from circular to elliptical.

For the probe to reach Mars, its parameters must satisfy the following equation, which we
will manipulate

− km

aZ + aM
= −km

aZ
+ 1

2mv2
p,

− k

aZ + aM
= − k

aZ
+ GM

2aZ
,

k
( 1

aZ
− 1

aZ + aM

)
= GM

2aZ
,

k
aM

aZ(aZ + aM) = GM

2aZ
,

k = GM − LS

2πcm
= GM(aZ + aM)

2aM
,

L

2πGcM

S

m
= 1 − aZ + aM

2aM
,

m

S
= L

2πGcM

(
1 − aZ + aM

2aM

)−1
,

m

S
= 8.912 · 10−3 kg·m−2 .= 8.91 g·m−2.

Thus, the surface density of the solar sail would need to be 8.91 g·m−2, to travel from Earth to
Mars along the Hohmann trajectory.

Jindřich Jelínek
jjelinek@fykos.org
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Problem H.1 . . . air under water – simplified to the maximum 4 points
We have a cube of side length a = 10 cm and density ρk = 150 kg·m−3. Starting from a position
where the bottom face of the cube is just touching the water surface, we submerge the cube in
the water by pushing it straight down (without any rotation) by h = 6.0 cm. How much work is
performed in this process? Assume that the surface area S of the water is enormous (S ≫ a2),
so the water level does not change during the process. Lego was correcting...

Using energy considerations
The cube has a mass mk = a3ρk, so when it is submerged by ∆hk = −h, its potential energy
decreases by

∆Epk = mkg∆hk = −a3ρkgh .

We have thus displaced water of volume a2h, and of mass mw = a2hρw. The centre of gravity
of this block of water was h/2 below the surface before the immersion. Since we assume that the
water reservoir is large and thus the water level does not change when the cube is submerged,
this water was displaced exactly to the level of the surface, so the height of its center of gravity
increased by ∆hw = h/2. Thus the potential energy of the water has increased by

∆Epw = mwg∆hw = a2hρwg
h

2 .

In total, the potential energy therefore increases by

∆Ep = ∆Epw − ∆Epk = a2hρwg
h

2 − a3ρkgh = ga2h
(

ρw
h

2 − ρka
)

= 0.088 J .

Using forces
The cube is continuously affected by the gravitational force Fg = mkg = a3ρkg. At the same
time, a buoyant force will be acting on it during the submersion. When the cube is submerged
by x, it will displace a liquid of volume xa2. Therefore, the buoyant force will be

Fb = V ρwg = a2xρwg .

The resulting force will then be (if we choose the direction against the direction of motion,
i.e. upwards, as the positive direction)

Ft = Fb − Fg = a2xρwg − a3ρkg .

Hence, the resulting work can be obtained simply by integration

W =
∫ h

0
Ft dx =

∫ h

0
(a2xρwg − a3ρkg) dx = [a2ρwgx2/2 − a3ρkgx]h0 = ga2h

(
ρw

h

2 − ρka
)

.

Or, if we want to avoid integration, we can use the fact that the force varies linearly, so we
can take the average force and multiply it by the total length of the trajectory. Its total length
is h, the average force can be calculated, for instance, as the force in the middle of the motion
(i.e. in x = h/2) as

F̄ = a2 h

2 ρwg − a3ρkg .
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We could also calculate it as the average of the forces at the beginning and the end (this works
precisely because the force varies linearly, otherwise this trick would not work). Then finally
we get the expression for work as

W = F̄ s =
(

a2 h

2 ρwg − a3ρkg
)

h = ga2h
(

ρw
h

2 − ρka
)

= 0.088 J .

It is also possible to use other tricks analogous to calculating the path of uniformly ac-
celerated motion (such as calculating the area of a trapezoid). Everything gives us the same
result.

Šimon Pajger
legolas@fykos.org

Problem H.2 . . . air under water – very simplified 4 points
We have a cube of side length a = 10 cm and density ρk = 150 kg·m−3. Starting from a position
where the bottom face of the cube is just touching the water surface, we submerge the cube in
the water by pushing it straight down (without any rotation) by h = 15 cm. How much work is
performed in this process? Assume that the surface area S of the water is enormous (S ≫ a2),
so the water level does not change during the process. ...and as Lego was correcting...

Using energy considerations
The cube has mass mk = a3ρk, so when it is submerged by ∆hk = −h, its potential energy
decreases by

∆Epk = mkg∆hk = −a3ρkgh .

The whole cube ended up under the water surface, so we have displaced water with vol-
ume a3, and mass mw = a3ρw. The centre of gravity of this block of water was h − a/2 below
the surface before the immersion. Since we assume that the reservoir of water is large and thus
the water level does not change when the cube is submerged, this water was displaced exactly
to the level of the surface, so the height of its center of gravity increased by ∆hw = h − a/2.
Hence the potential energy of the water has increased by

∆Epw = mwg∆hw = a3ρwg
(

h − a

2

)
.

So, in total, the potential energy increases by

∆Ep = ∆Epw − ∆Epk = a3ρwg
(

h − a

2

)
− a3ρkgh = ga3

(
ρw

(
h − a

2

)
− ρkh

)
= 0.76 J .

Using forces
The cube is continuously affected by the gravitational force Fg = mkg = a3ρkg. At the same
time, a buoyant force will be acting on it during the submersion. When the cube is submerged
by x < a, it displaces a liquid of volume xa2. Therefore, the buoyant force will be

Fb = V ρwg = a2xρwg .
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Then the work necessary to get the cube under the surface can be obtained using the
methods mentioned in the previous problem. By integration

W1 =
∫ a

0
Ft dx =

∫ a

0
(a2xρwg − a3ρkg) dx = [a2ρwgx2/2 − a3ρkgx]a0 = ga4

(1
2ρw − ρk

)
.

or, using the average force

W1 = F̄ s =
(

a2 a

2 ρwg − a3ρkg
)

h = ga4
(1

2ρw − ρk

)
.

Consequently, when the whole cube is underwater, the volume of the displaced liquid is
constant, so the total force is also constant Ft = a3g(ρw − ρk). The cube has reached this state
after moving a distance a, so with this constant force it has to move the remaining h − a, and
thus it is still necessary to perform the work

W2 = Ft(h − a) = a3g(ρw − ρk)(h − a) .

Finally, we obtain that the total work performed during the process is

W = W1 + W2 = ga4
(1

2ρw − ρk

)
+ a3g(ρw − ρk)(h − a) = ga3

(
ρw

(
h − a

2

)
− ρkh

)
= 0.76 J .

Šimon Pajger
legolas@fykos.org

Problem H.3 . . . air under water – less simplified 5 points
We have a cube of side length a = 10 cm and density ρk = 150 kg·m−3. Starting from a position
where the bottom face of the cube is just touching the water surface, we submerge the cube in
a water container by pushing it straight down (without any rotation) by h = 15 cm. How much
work is performed in this process? The cross-section of the container (i.e. the surface area)
is S = 300 cm2. ...Lego thought of different simplified versions of the problem...

We will only discuss the solution using energy, as it is mathematically simpler. The cube has
mass mk = a3ρk, so that its potential energy decreases by ∆hk = −h when it is submerged
by ∆hk = −h.

∆Epk = mkg∆hk = −a3ρkgh .

The whole cube ended up under water, so the displaced water is of volume a3, and mass mw =
= a3ρw. The centre of gravity of this block was h − a/2 below the surface before the being
submerged. The displaced water is now above the original surface level. Thus, the level has
risen by the ratio of the volume of displaced water to the surface area ∆hh = a3/S, with
the center of gravity of the displaced water being in the middle of this block. The displaced
water has thus risen by its path to the surface and by a path that is above the original sur-
face ∆hw = h−a/2+∆hh/2 = h−a/2+a3/(2S). Thus the potential energy of water increased
by

∆Epw = mwg∆hw = a3ρwg

(
h − a

2 + a3

2S

)
.
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In total, the potential energy increases by

∆Ep = ∆Epw − ∆Epk = a3ρwg

(
h − a

2 + a3

2S

)
− a3ρkgh

= ga3
(

ρw

(
h − a

2 + a3

2S

)
− ρkh

)
= 0.92 J .

Šimon Pajger
legolas@fykos.org

Problem H.4 . . . air under water – still simplified 5 points
We have a cube of side length a = 10 cm and density ρk = 150 kg·m−3. Starting from a position
where the bottom face of the cube is just touching the water surface, we submerge the cube
in a water container by pushing it straight down (without any rotation) by h = 6.0 cm. How
much work is performed in this process? The cross-section of the container (i.e. the surface
area) is S = 300 cm2. ...until Lego finished correcting.
A solution using forces is possible, but more complex (although in the case of this problem the
difference is not that significant).

The cube has mass mk = a3ρk, so upon submerging by ∆hk = −h, its potential energy
decreases by

∆Epk = mkg∆hk = −a3ρkgh .

We have displaced5 water of volume a2h and of mass mw = a2hρw. The centre of mass of
this block of water was h/2 below the surface before submerging. However, the displaced water
must rise above the original surface and fit somewhere between the cube’s walls and the walls
of the container, forming a prism with base area S − a2 and volume a2h. The height of this
prism will therefore be ∆hh = a2h/(S −a2) = 3 cm,6 with the centre of gravity of the displaced
water being in the middle of this height.The change in the height of the displaced water’s center
of mass is thus given by the sum of the distance to the original surface (h/2) and the distance
above it (a2h/2(S − a2)). Altogether, the total change in the potential energy of water will be

∆Epw = mwg∆hw = a2hρwg

(
h

2 + a2h

2(S − a2)

)
= 1

2a2h2ρwg
S

S − a2 ,

we can note that for S ≫ a2 the last fraction would approach 1, so we would get the same
result as in the first problem of this hurry-up series.

In total, the potential energy increases by

W = ∆Epw + ∆Epk = 1
2a2h2ρwg

S

S − a2 − a3ρkgh = ga2h
(

ρw
h

2
S

S − a2 − ρka
)

= 0.18 J .

Šimon Pajger
legolas@fykos.org

5Note, in this solution, by “displaced water”, we only mean the portion of the cube’s volume that is in the
region where water was present before submersion. Thus, the portion of the volume that is now below the
surface but above the original water level is not considered, as there was no water there, and we do not need
to account for its displacement.

6It is important to check here that indeed h + ∆hh < a, i.e., the cube will not be fully submerged.
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Problem M.1 . . . first ride through Blanka 3 points
A road pirate drives a car at v1 = 80.0 km·h−1. After travelling one third of the distance over
which the section measurement is taking place, he realises that he should maintain the maximum
permissible speed v̄ = 70.0 km·h−1, which is measured as the average speed of travelling through
the measured section. What is the highest speed v2 he can travel for the next two-thirds of the
track to maintain the maximum permissible speed? Neglect the time required to decelerate to
the desired speed. Give the answer in km·h−1. Karel was thinking about speed.

Denoting the total distance traveled as s, we can express the total time, and therefore the
maximum speed that the road pirate could travel as follows

t = s

v̄
= 1

3
s

v1
+ 2

3
s

v2
,

where the total distance cancels out. This simplifies the equation. We want to determine the
velocity v2, so we rearrange it to isolate v2 on one side

2
3

1
v2

= 1
v̄

− 1
3

1
v1

,

which leads to
3
2v2 = 3v̄v1

3v1 − v̄
.

From there, we find
v2 = 2v̄v1

3v1 − v̄

.= 65.9 km·h−1 .

If the pirate travels the first third of the distance at 80.0 km·h−1, then he must drive the rest of
the way at 65.9 km·h−1 to maintain an average speed of 70.0 km·h−1. Thus, this result is not
simply 65.0 km·h−1 as one might intuitively expect.

Karel Kolář
karel@fykos.org

Problem M.2 . . . riding through Blanka... maybe... 4 points
Imagine that you need to decide how to travel to your cottage. You are choosing between
a route of length s1 = 13 km traveled in t1 = 25 min and a route of length s2 = 20 km traveled
in t2 = 20 min. Assume that the gasoline consumption is constant c = 6.7 l/(100 km) and the
price of gasoline is p = 40.2 CZK·l−1. It is said that time is money. What is the minimum value
your time must have to make it more profitable for you to take the longer route? Give the
result in Czech crowns per hour. Karel was thinking about finances and the value of time.

The real problem would of course be more complex. The traffic situation is dynamically chang-
ing, and even if the navigation advises us to take a faster route, an accident may occur on that
section and we may be delayed. Conversely, a traffic jam may dissolve on another route that we
did not choose. Our problem is a simple model with constant parameters. In a real situation,
fuel consumption also varies depending on speed, and in urban areas, it fluctuates based on
acceleration and deceleration at intersections.
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Now, let us solve our specific problem. The cost of fuel consumed while traversing a route
is determined by the product of the distance, fuel consumption, and fuel price. For the first,
shorter route, the cost is

P1 = s1cp
.= 35.0 CZK .

For the second route, it is similarly

P2 = s2cp
.= 53.9 CZK .

To justify taking the longer route, the value of time, in units of CZK·h−1, must exceed the
difference in costs divided by the time taken, i.e.,

X >
P2 − P1

t1 − t2
= s2 − s1

t1 − t2
cp

.= 226 CZK·h−1 .

To take the longer route in less time in this particular case, we have to value our time at
more than 226 crowns per hour. In a real-world situation, the vehicle achieves its lowest fuel
consumption when driving smoothly without breaking, at a speed that typically depends on
the car’s aerodynamics. This speed is usually claimed to be around 80 km·h−1 to 90 km·h−1

for normal passenger cars. Therefore, the difference in the fuel consumed on our two routes is
likely to be smaller, so a lower estimate of our time would suffice.

Karel Kolář
karel@fykos.org

Problem M.3 . . . changing speeds in Blanka 4 points
Imagine you are driving on a straight road with no restrictions due to traffic, but you want to
adhere to the speed limits. On the road, the speed limits regularly alternates between v50 =
= 50 km·h−1 and v70 = 70 km·h−1 and the signs are always d = 500 m apart. You drive in
such way, that at the sign 70, you start to accelerate with acceleration a = 1.2 m·s−2 from the
speed v50 to v70. Conversely, you start decelerating with an acceleration of the same magnitude
but in the opposite direction to reach a speed of v50 just at the 50 sign. Otherwise, you always
drive at the maximum speed allowed in the section. What average speed in kilometers per hour
will you reach? Ignore the length of the car. Karel thought about averages.

The described road ride consists of four repeating parts: a steady ride over the whole distance
at v50, acceleration to v70, a steady ride at v70, and deceleration back to v50. The average speed
will be determined from the total time T it takes for the car to travel the distance 2d.

The time for the first part is easily calculated as

t1 = d

v50
= 36 s .

From symmetry, the second and fourth parts will take the same amount of time, and we
determine the time based on the acceleration from v50 to v70 as

t2 = t4 = v70 − v50

a

.= 4.63 s .

We should verify, whether we even have enough time to accelerate and decelerate, but we will
do that now by finding out how much distance we still have to travel to determine the third
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time. The distance the car will travel during the time t2 (and therefore also during t4) is given
by

∆s = 1
2at2

2 + v50t2 = 1
2

(v70 − v50)2

a
+ v50

v70 − v50

a
= 1

2
v2

70 − v2
50

a

.= 77.2 m .

Then, in the third phase of motion, it is sufficient to travel the distance d − 2∆s at speed v70,
i.e.

t3 = d − 2∆s

v70
=

d − v2
70 − v2

50

a
v70

= d

v70
− v70

a
+ v2

50

av70

.= 17.8 s .

We obtain the total cycle time as a rather convoluted expression

T = t1 + t2 + t3 + t4 = d

v50
+ 2v70 − v50

a
+ d

v70
− v70

a
+ v2

50

av70
=

= d
( 1

v50
+ 1

v70

)
+ 1

a

(
v70 − 2v50 + v2

50

v70

)
.= 63.0 s .

The average velocity is then given as

v̄ = 2d

T
= 2

1
v50

+ 1
v70

+ 1
da

(
v70 − 2v50 + v2

50
v70

) .= 15.9 m·s−1 = 57.1 km·h−1 .

Maintaining this driving speed results in an average speed of 57.1 km·h−1.

Karel Kolář
karel@fykos.org

Problem M.4 . . . riding through Blanka... pirate style 5 points
Imagine a road pirate, with a car of mass m = 1 290 kg and of engine power P = 92.0 kW, which
drives at speed v0 = 70.0 km·h−1 into the Blanka tunnel complex and decides to accelerate with
maximum engine power. What speed would he achieve if he could accelerate this way for the
entire length of the complex d = 5 502 m? For simplicity, neglect the tunnel height changes and
the drag forces (which in reality play an important role) and assume that the car has no limit
on its maximum speed. Give the result in kilometers per hour.

Karel thought about car acceleration.

First of all, we must not forget to convert the velocity v0
.= 19.4 m·s−1 into basic units. Since

we can neglect drag forces and changes in height, we can start from the law of conservation of
mechanical energy

Ek = P t = 1
2mv2 ⇒ v =

√
2P t

m
,

where v is the velocity at time t. We can use this relation for velocity to integrate and obtain
the position dependence on time. The bounds for our integration will be considered as the
time when the car has a velocity v, which occurs at t0 = mv2

0/(2P ) .= 2.65 s, to some time t1
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when we reach the end of the tunnel complex at a distance d from the start of the motion
measurement. Thus, we get

d =
∫ t1

t0

√
2P t

m
dt = 2

3

√
2P

m

(√
t3
1 −
√

t3
0

)
= 2

3

√
2P

m

√t3
1 −

√(
mv2

0
2P

)3
 .

We are now looking for the time t when the pirate exits the tunnel complex, so we can express t1
from the previous equation as follows√

t3
1 =

(
mv2

0

2P

)3/2

+ 3
2d

√
m

2P
,

t1 =

((
mv2

0

2P

)3/2

+ 3
2d

√
m

2P

)2/3
.= 78.5 s .

The pirate reaches the end of the tunnel in approximately 78.5 s, and his speed can be deter-
mined by substituting this value into the original relation for speed over time

v1 =

√
2P t1

m
=

√
2P

m

((
mv2

0

2P

)3/2

+ 3
2d

√
m

2P

)1/3

= 3

√
v3

0 + 3P

m
d

.= 106 m·s−1 .= 381 km·h−1 .

Thus, if the pirate kept his foot on the gas, and if there were no drag forces on the car, the road
height remained constant, and the car could accelerate to that speed, he would reach a speed
of 381 km·h−1.

Karel Kolář
karel@fykos.org
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